DOI QR코드

DOI QR Code

Removal of Synthetic Heavy Metal ($Cr^{6+}$, $Cu^{2+}$, $As^{3+}$, $Pb^{2+}$) from Water Using Red Mud and Lime Stone

적니와 석회석을 이용한 혼합 중금속($Cr^{6+}$, $Cu^{2+}$, $As^{3+}$, $Pb^{2+}$)의 제거

  • Kang, Ku (Institute of Marine Science and Technology Research, Hankyong National University) ;
  • Park, Seong-Jik (Department of Bioresources & Rural systems Engineering, Hankyong National University) ;
  • Shin, Woo-Seok (Institute of Marine Science and Technology Research, Hankyong National University) ;
  • Um, Byung-Hwan (Department of Chemical Engineering, Hankyong National University) ;
  • Kim, Young-Kee (Institute of Marine Science and Technology Research, Hankyong National University)
  • 강구 (한경대학교 해양과학기술연구센터) ;
  • 박성직 (한경대학교 지역자원시스템공학과) ;
  • 신우석 (한경대학교 해양과학기술연구센터) ;
  • 엄병환 (한경대학교 화학공학과) ;
  • 김영기 (한경대학교 해양과학기술연구센터)
  • Received : 2012.06.12
  • Accepted : 2012.08.29
  • Published : 2012.08.30

Abstract

This study examined the removal rate of heavy metals from synthetic control water using red mud and lime stone. Overall, the percent of absorption obtained in this study for the red mud treatment was 94.0% ($Pb^{2+}$), 67.1% ($As^{3+}$), 37.5% ($Cu^{2+}$), and 36.6% ($Cr^{6+}$), while that of lime stone was $Pb^{2+}$ (30.8%), $Cu^{2+}$ (16.5%), $Cr^{6+}$ (11.5%), and $As^{3+}$ (8.9%). The kinetic data presented that the slow course of adsorption follows the Pseudo first and second order models, the equilibriuim adsorption of $Cr^{6+}$ and $Pb^{2+}$ obeys Freundlich isotherm model, while the adsorption of $Cu^{2+}$ obeys only Langmuir model. The results also showed that adsorption rate slightly increased with increasing pH from 5 to 9. Interestingly, this trend is similar to results obtained as function of loading amount of red mud. Meanwhile, an unit adsorption rate was slightly decreased. For lime stone, it did not much change in adsorption as function of treatment amount. Consequently, it was concluded that the absorbents can be successfully used the removal of the heavy metals from the aqueous solutions.

본 연구에서는 적니와 석회석을 이용하여 혼합중금속의 제거능을 평가하였다. 적니의 중금속 흡착은 $Pb^{2+}$ (94.0%), $As^{3+}$ (67.1%), $Cu^{2+}$ (37.5%), $Cr^{6+}$ (36.6%) 순의 흡착률 나타났으며, 석회석은 $Pb^{2+}$ (30.8%), $Cu^{2+}$ (16.5%), $Cr^{6+}$ (11.5%), $As^{3+}$ (8.9%)의 흡착률을 나타내었다. 동적흡착 실험결과를 유사 1차 모델과 유사 2차 모델로 분석한 결과 두 모델 모두 실험결과에 잘 부합하는 것으로 나타났으며 평형흡착 실험결과 Freundlich 모델은 적니와 석회석의 $Cr^{6+}$, $Pb^{2+}$ 흡착에 부합하며, $Cu^{2+}$ 흡착은 Langmuir 모델에 부합하였다. 용액의 pH가 5에서 9로 증가함에 따라서 흡착률은 증가하는 것으로 나타났다. 또한, 적니의 양이 증가함에 따라서 중금속의 흡착률은 증가하였지만, 단위 질량당 흡착량은 조금 감소하였다. 반면, 석회석의 양이 증가하여도 흡착양에 변화가 없는 것으로 나타났다. 본 연구 결과를 통해 적니와 석회석은 중금속을 효율적으로 제거할 수 있는 흡착제로 판단된다.

Keywords

Acknowledgement

Supported by : 한국해양과학기술진흥원

References

  1. Bae, S. W., Han, C. Y., Lee, B. J. and Kwon, Y. B., "Characteristics of Cement Based Solidification for Municipal Solid Waste Incineration Plant Fly Ash(in Kor.)," J. Kor. Solid Waste Eng. Soc., 16, 67-72(1999).
  2. 강태중, 조규옥, "수입 냉동어류중의 중금속 함량에 관한 연구(II)," 여수수산대학교 수산과학연구소 연구보고, 5, 101-108(1996).
  3. Environmental Protecion Agency, USA, "CERCLA List of Priority Hazardous Substances,"(1999).
  4. 국토해양부, "해양오염퇴적물 정화・복원사업 추진을 위한 실무지침서," pp. 74-80(2010).
  5. 정재훈, "Alginate Bead를 이용한 3가 및 6가 크롬 제거에 관한 연구," 전남대학교 박사학위논문(2007).
  6. 박성직, 김재현, 이창구, 박정안, 최낙철, 김성배, "고온 처리된 활성알루미나를 이용한 불소 제거," 대한환경공학회지, 32(10), 986-993(2010).
  7. 강한, 박성민, 장윤득, 김정진, "제올라이트와 벤토나이트를 이용한 중금속 흡착 특성," 한국광물학회지, 21(1), 45-46(2008).
  8. 노진환, "천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구(II): 국내산 제올라이트의 중금속 이온 흡착 특성," 한국광물학회지, 16(3), 201-213(2003).
  9. 이용수, 현재혁, "인산석고 혼합 화강토의 중금속 흡착 특성," 한국폐기물학회지, 23(1), 38-44(2006).
  10. 조희찬, 오달영, "석탄회의 중금속 흡착 특성 연구," J. KoreanInst. of Resources Recycling, 10(4), 10-17(2001).
  11. 전대영, 이경심, 신현무, 오광중, "폐슬러지와 폐굴껍질의 중금속 흡착특성," 한국환경과학회지, 15(11), 1053-1059(2006).
  12. 임수빈, 김재곤, 송호철, "Red Mud를 이용한 중금속 Cd 및 Pb의 흡착제거 특성," 한국지반환경공학회지, 12(7), 39-47(2011).
  13. 김덕기, 신창섭, "입상 활성탄의 물리적특성 변화에 따른 흡착특성," 한국산업안전학회지, 11(1), 84-89(1996).
  14. 박명호, 이영우, 허연강, 박해철, 사성오, 최정찬, "인회석 및 석회석을 이용한 고로폐광산 ARD 내의 비소 저감효율 연구," J. Eng. Geol., 21(3), 231-237(2011). https://doi.org/10.9720/kseg.2011.21.3.231
  15. 문정호, 김태진, 최충호, 김철규, "점토광물에 의한 중금속 흡착 특성," 대한환경공학회지, 28(7), 704-712(2006).
  16. 김성수, 박만, 허남호, 최정, "천연 Zeolite를 이용한 중금속 흡착제의 개발," 한국환경농학회지, 10(1), 11-19(1991).
  17. Ho, Y. S. and McKay, G., "The sorption of lead(II) ions on peat," Water Res., 33, 578-584(1999). https://doi.org/10.1016/S0043-1354(98)00207-3
  18. Ho, Y. S. and McKay, G., "Pseudo-second order model for sorption Processes," Proc. Biochem., 34(5), 451-465(1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  19. Weng, C. H. and Huang, C. P., "Treatment of metal industrial waste water by fly ash and cement fixation," J. Environ. Eng., 120(6), 1470-1487(1994). https://doi.org/10.1061/(ASCE)0733-9372(1994)120:6(1470)
  20. American Water Works Association, "Water Quality & Treatment Hand Book," McGraw-Hill(1999).
  21. 이효숙, 오영순, 이우철, "폐산화철촉매에 의한 폐수중 Ni, Cu, Fe, Zn 이온 회수에 관한 기초연구," J. Kor. Inst. Res. Recycling, 13(2), 3-8(2004).
  22. Altundogan, H. S., Altundogan, S., Tumen, F. and Bildik, M., "Arsenic removal from aqueous solutions by adsorption on red mud," Waste Manage., 20(8), 761-767(2000). https://doi.org/10.1016/S0956-053X(00)00031-3
  23. Verinika, D. and Carlo, V., "Immobilization Mechanism of Arsenic in Waste Solidified Using Cement and Lime," Environ. Sci. Technol., 32, 2782-2787(1998). https://doi.org/10.1021/es971090j
  24. C.-H. Wu, S.-L. Lo, and C.-F. Lin, "Competitive adsorption of molybdate, chromate, sulfate, selenate, and selenite on g-$Al_2O_3$," Colloids Surf. A:Physicochem. Eng. Aspects, 166, 251-259(2000). https://doi.org/10.1016/S0927-7757(99)00404-5
  25. Iztok Arcon, Breda Mirtic, Alojz Kodre, "Determination of Valence States of Chromium in Calcium Chromates by Using X-ray Absorption Near-Edge Structure (XANES) Spectroscopy," J. Am. Ceram. Soc., 81(1), 222-224(1998).
  26. Jens Reich, Christoph Pasel, Jan-DirkHerbell, Michael Luckas, "Effects of limestone addition and sintering on heavy metal leaching from hazardous waste incineration slag," Waste Manage., 22, 315-326(2002). https://doi.org/10.1016/S0956-053X(01)00020-4
  27. Quy T. Nguyen, and Bruce A. Manning, "Lead Adsorption and Precipitation Reactions on Soil Minerals," Symposia papers Presented Before the Division of Environmental Chemistry American Chemical Society, 41(1), 609-613(2001).
  28. Chen, G. Z. and Fray, D. J., "Cathodic refining in molten salts: Removal of oxygen, sulfur and selenium from static and flowing molten copper," J. Appl. Electrochem., 31(2), 155-164(2001). https://doi.org/10.1023/A:1004175605236
  29. 角皆静男, "海水の組成と化学平衡," 海洋科學, 1(3), 238-243(1969).

Cited by

  1. Applicability Assessment of Acid Treated Red Mud as Adsorbent Material for Removal of Six-valent Chromium from Seawater vol.55, pp.5, 2013, https://doi.org/10.5389/KSAE.2013.55.5.017
  2. Influence of Acid and Heat Treatment on the Removal of Fluoride by Red Mud vol.37, pp.4, 2015, https://doi.org/10.4491/KSEE.2015.37.4.210
  3. Assesment of Zeolite, Montmorillonite, and Steel Slag for Interrupting Heavy Metals Release from Contaminated Marine Sediments for Capping Thickness of Reactive materials vol.39, pp.4, 2015, https://doi.org/10.5394/KINPR.2015.39.4.335
  4. Application of Limestone, Zeolite, and Crushed Concrete as Capping Material for Interrupting Heavy Metal Release from Marine Sediments and Reducing Sediment Oxygen Demand vol.57, pp.4, 2015, https://doi.org/10.5389/KSAE.2015.57.4.031
  5. Natural Zeolite and Sand Capping Treatment for Interrupting the Release of Cd, Cr, Cu, and Zn from Marine Contaminated Sediment and Stabilizing the Heavy Metals vol.38, pp.3, 2016, https://doi.org/10.4491/KSEE.2016.38.3.135
  6. Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments vol.58, pp.2, 2016, https://doi.org/10.5389/KSAE.2016.58.2.001
  7. Application of Lime Stone, Sand, and Zeolite as Reactive Capping Materials for Marine Sediments Contaminated with Organic Matters and Nutrients vol.39, pp.8, 2017, https://doi.org/10.4491/KSEE.2017.39.8.470