DOI QR코드

DOI QR Code

Generation of Free Chlorine Using $RuO_2$/ Ti Electrode with Various Amount of Ru

Ru 코팅량에 따른 $RuO_2$/Ti 전극의 염소 발생

  • Lee, JunCheol (Graduate School of Energy and Environment, Seoul National University of Science & Technology) ;
  • Pak, DaeWon (Graduate School of Energy and Environment, Seoul National University of Science & Technology)
  • 이준철 (서울과학기술대학교 에너지환경대학원) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원)
  • Received : 2011.08.27
  • Accepted : 2012.11.15
  • Published : 2012.11.30

Abstract

We investigated the effects of electrochemical characteristics and generation of chlorine by the different amount of Ru coating which was prepared for $RuO_2$/Ti electrode coated with 1.5 mg, 2.5 mg, 5.5 mg, 8.5 mg Ru per unit area ($cm^2$). As a Result of the cycle voltammetry experiments, chlorine overvoltage of Ru-coated electrodes showed to be the nearly sustained value of approximately 1.15V (vs. Ag/AgCl). By contrary, According to the results of the AC impedance spectroscopy and potentiodynamic polarization tests, the amount of Ru per unit area ($cm^2$) included 2.5 mg, 3.5 mg as $RuO_2$/Ti offered the highest levels of durability which was electrode resistance and corrosion rate appeared to be $0.4582{\Omega}$, $0.5267{\Omega}$ and 0.082 mm/yr, 0.058 mm/yr, respectively. It was also observed that generation of chlorine coated with 3.5 mg per unit area ($cm^2$) was the highest value of 15.2 mg/L.

단위면적당($cm^2$) 루테늄의 코팅량이 1.5 mg, 2.5 mg, 3.5 mg, 5.5 mg, 8.5 mg의 $RuO_2$/Ti 전극을 제조하여 코팅량에 따른 전기화학적 특성 차이와 염소 발생에 미치는 영향을 조사하였다. 순환전압 실험 결과 루테늄이 코팅된 전극의 염소 발생 과전압은 약 1.15 V (vs. Ag/AgCl)로 거의 일정하였다. 그러나 교류 임피던스 분광법, 동전위분극실험 결과 단위면적당($cm^2$) 루테늄의 코팅량이 2.5 mg, 3.5 mg $RuO_2$/Ti 전극의 저항은 각각 $0.4582{\Omega}$, $0.5267{\Omega}$, 부식속도는 각각 0.082 mm/yr, 0.058 mm/yr로 내구성이 가장 우수하였다. 염소 발생량은 단위면적당($cm^2$) 루테늄의 코팅량 3.5 mg 전극이 15.2 mg/L로 가장 높게 측정되었다.

Keywords

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. Gunten U. V., "Ozonation of drinkingwater: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine," Water Res., 37, 1469-1487(2003). https://doi.org/10.1016/S0043-1354(02)00458-X
  2. Richardson S. D., Thruston A. D. JR., Caughran T. V., Chen P. H., Collette T. W., Eloyd T. L., Schenck K. M., Lykins B. W. JR., Sun G. R. and Majetich G., "Identification of New Drinking Water Disinfection Byproducts Formed in the Presence of Bromide," Enviorn. Sci. Technol., 33, 3378-3383 (1999). https://doi.org/10.1021/es9900297
  3. Richardson S. D., Thruston A. D. JR., Caughran T. V., Chen P. H., Collette T. W., Eloyd T. L., Schenck K. M., Lykins B. W. JR., Sun G. R. and Majetich G., "Identification of New Ozone Disinfection Byproducts in Drinking Water," Enviorn. Sci. Technol., 33, 3368-3377(1999). https://doi.org/10.1021/es981218c
  4. Guo M., Hu H. and Liu W., "Preliminary investigation on safety of post-UV disinfection of wastewater: bio-stability in laboratory-scale simulated reuse water pipelines," Desalination, 239, 22-28(2009). https://doi.org/10.1016/j.desal.2008.03.003
  5. Brahmi M., Belhadi N. H., Hamdi H. and Hassen A., "Modeling of secondary treated wastewater disinfection by UV irradiation: Effects of suspended solids content," J. Enviorn. Sci., 22(8), 1218-1224(2010). https://doi.org/10.1016/S1001-0742(09)60241-2
  6. Kusakabe K., Aso S., Hayashi J. I., Isomura K. and Morooka S., "Decomposition of humic acid and reduction of trihalomethane formation potential in water by ozone with UV irradiation," Water Res., 24(6), 781-785(1990). https://doi.org/10.1016/0043-1354(90)90036-6
  7. Takahashi N., "Ozonation of several organic compounds having low molecular weight under ultraviolet irradiation," Ozone Sci. Eng., 12(1), 1-18(1990). https://doi.org/10.1080/01919519008552452
  8. Solomon K. R., "Chlorine in the bleaching of pulp and paper," Pure Appl. Chem., 68(9), 1721-1730(1996).
  9. Fauvarque J., "The chlorine industry," Pure Appl. Chem., 68 (9), 1713-1720(1996).
  10. Gorchev H. G., "Chlorine in water disinfection," Pure Appl. Chem., 68(9), 1731-1735(1996).
  11. Music S., Popovic S., Maljkovic M., Furic K. and Gajovic A., "Influence of synthesis procedure on the formation of $SnO_{2}$," Mater. Lett., 56, 806-811(2002). https://doi.org/10.1016/S0167-577X(02)00618-3
  12. Yoshinaga N., Sugimoto W. and Takasu Y., "Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution," Electrochim. Acta, 54, 566-573(2008). https://doi.org/10.1016/j.electacta.2008.07.020
  13. Chen X. and Chen X., "Stable $Ti/RuO_{2}-Sb_{2}O_{5}-SnO_{2}$ electrodes for $O_{2}$ evolution," Electrochim. Acta, 50, 4155-4159 (2005). https://doi.org/10.1016/j.electacta.2005.01.032
  14. De Pauli C. P. and Trasatti S., "Composite materials for electrocatalysis of $O_{2}$ evolution: $IrO_{2}$ + $SnO_{2}$ in acid solution," J. Electroanal. Chem., 538, 145-151(2002).
  15. De Pauli C. P. and Trasatti S., "Electrochemical surface characterization of $IrO_{2}$ + $SnO_{2}$ mixed oxide electrocatalysts," J. Electroanal. Chem., 396, 161-168(1955).
  16. Murakami Y., Ito M., Kaji H. and Taksu Y., "Surface characterization of ruthenium-tin oxide electrodes," Appl. Surf. Sci., 121/122, 314-318(1997). https://doi.org/10.1016/S0169-4332(97)00314-0
  17. Chae K. S., Choi H. K., Ahn J. H., Song Y. S. and Lee D. Y., "Effect of organic vehicle addition on service lifetime of Ti/$IrO_{2}$-$SnO_{2}$ electrodes," Matter. Lett., 55, 211-216(2002). https://doi.org/10.1016/S0167-577X(01)00648-6
  18. 손성호, 이홍기, 권대철, 정도원, "전기화학적 폐수처리용 촉매전극 개발," 2006 춘계학술연구발표회 논문집, 대한환경공학회, pp. 1257-1263(2006).
  19. Tomcsányi L., Battisti A. D., Hirschberg G., Varga K. and Liszi J., "The study of the electrooxidation of chloride at $SnO_{2}$/$TiO_{2}$ electrode using CV and radiotracer techniques and evaluating by electrochemical kinetic simulation methods," Electrochim. Acta, 44, 2463-2472(1999). https://doi.org/10.1016/S0013-4686(98)00381-8
  20. Bard A. J. and Faulkner L. R., "Electrochemical methods : Fundamentals and applications," John Wiley & Sons Inc., (2001).
  21. 김민준, 장영욱, 유윤하, 김종집, 김정구, "저합금강의 부식 속도에 미치는 시편 면적의 영향," 전기화학회지, 13(2), 96-102(2010).
  22. 장종현, 오승모, "임피던스 복소캐패시턴스 분석법의 이론 및 응용," 전기화학회지, 13(4), 223-234(2010).
  23. 한원식, 이혜림, 홍태기, "환경 물 시료 중 잔류 염소 측정 장치의 개발," 한국환경분석학회지, 13(3), 188-194(2010).

Cited by

  1. Optimum Operating Conditions of Soil Electrolysis Apparatus for Chloride Ion Removal of Coal Bottom Ash vol.35, pp.1, 2018, https://doi.org/10.9786/kswm.2018.35.1.49