DOI QR코드

DOI QR Code

3D IR 매트릭스 버너에 의한 모사 바이오가스 촉매 개질 연구

The Study of Model Biogas Catalyst Reforming Using 3D IR Matrix Burner

  • 임문섭 (조선대학교 환경공학과) ;
  • 전영남 (BK21 바이오가스기반 수소생산 사업팀)
  • 투고 : 2012.01.11
  • 심사 : 2012.12.17
  • 발행 : 2012.12.30

초록

현재 이산화탄소에 의한 지구기후변화는 세계적으로 논의되고 있다. 화석연료를 대신할 수 있는 청정 연료를 찾고 있다. 에너지 생산을 위한 지속가능한 바이오가스 사용은 이산화탄소 배출에 기여하지 않아 온난화가스를 줄이는데 높은 잠재력을 가지고 있다. 모사 바이오가스(메탄 : 이산화탄소 = 60% : 40%)를 이용한 높은 수소 합성가스 생산을 위한 촉매 수증기 개질연구를 하였다. 표면연소의 3D 적외선 매트릭스 버너에 바이오가스를 적용하였다. 개질기에는 Ru 촉매를 이용하였다. 변수별 연구로 수증기/탄소 비, 바이오가스 성분비, 공간속도, 개질기 온도를 진행하였다. 수증기/탄소 비, 바이오가스 성분비, 공간속도, 개질기 온도가 각각 3.25, 60% : 40%, $14.7L/g{\cdot}hr$, $550^{\circ}C$일 때, 수소 농도, 메탄 전환율이 최대값을 나타내었다. 위 조건에서 수소 수율, 수소/일산화탄소 비, 일산화탄소 선택도, 에너지 효율은 0.65, 2.14, 0.59, 51.29%를 나타내었다.

Global climate changes caused by $CO_2$ emissions are currently debated around the world; green sources of energy are being sought as alternatives to replace fossil fuels. The sustainable use of biogas for energy production does not contribute to $CO_2$ emission and has therefore a high potential to reduce them. Catalytic steam reforming of a model biogas ($CH_4:CO_2$ = 60%:40%) is investigated to produce $H_2$-rich synthesis gas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The ruthenium catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60% : 40%, $14.7L/g{\cdot}hr$ and $550^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ yield, $H_2$/CO ratio, CO selectivity and energy efficiency were 0.65, 2.14, 0.59, 51.29%.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Effendi, A., Zhang, Z.-G., Hellgardt, K., Honda, K. and Yoshida, T., "Steam reforming of a clean model biogas over Ni/ $Al_{2}O_{3}$ in fluidized- and fixed-bed reactors," Catal. Today, 77, 181-189(2002). https://doi.org/10.1016/S0920-5861(02)00244-4
  2. Ashrafi, M., Pröll, T., Pfeifer, C. and Hofbauer, H., "Experimental study of model biogas catalytic steam reforming: 1. Thermodynamic optimization," Energy Fuels, 22, 4182-4189 (2008). https://doi.org/10.1021/ef800081j
  3. Beckhaus, P., Heinzel, A., Mathiak, J. and Roes, J., "Dynamic of $H_{2}$ production by steam reforming," J. Power Sour., 127, 294-299(2007).
  4. Nimwattanakul, W., Luengnaruemitchai, A. and Jitkarnka, S., "Potential of Ni supported on clinoptilolite catalysts for carbon dioxide reforming of methane," Int. J. Hydrogen Energy, 31(1), 93-100(2006). https://doi.org/10.1016/j.ijhydene.2005.02.005
  5. Zhua, J., Zhang, D. and King, K. D., "Reforming of $CH_{4}$ by partial oxidation: thermodynamic and kinetic analyses," Fuel, 80, 899-905(2001). https://doi.org/10.1016/S0016-2361(00)00165-4
  6. Kim, S. C. and Chun, Y. N., "Characteristic of Partical Oxidation of Methane and Ni Catalyst Reforming using GlidArc Plasma," J. Kor. Soc. Environ. Eng., 30(12), 1268-1272(2008).
  7. Takeno, T. and Sato, K., "An excess enthalpy flame theory," Combust. Sci. Technol., 20, 73-84(1979). https://doi.org/10.1080/00102207908946898
  8. Bakry, A. I. "Stabilized Premixed Combustion within Atmospheric Gas Porous Inert Medium (PIM) Burner," International Conference on Energy and Environment 2006, BANGI, SELANGOR, Malaysia, pp. 1-9(2006).
  9. Kolios, G., Gritsch, A., Morillo, A., Tuttlies, U., Bernnat, J., Opferkuch, F. and Eigenberger, G., "Heat-integrated reactor concepts for catalytic reforming and automotive exhaust purification," Appl. Catal. B, 70, 16-30(2007). https://doi.org/10.1016/j.apcatb.2006.01.030
  10. Ji, H. B., Feng, D. Y. and He, Y. B., "Low-temperautre utilization of $CO_{2}$ and $CH_{4}$ by combining partial oxidation with reforming of methane over Ru-based catalysts," J. Nat. Gas Chem., 19, 575-582(2010). https://doi.org/10.1016/S1003-9953(09)60117-1
  11. Chun, Y. N., Yang, Y. C. and Yoshikawa, K., "Hydrogen generation from biogas reforming using a gliding arc plasmacatalyst reformer," Catal. Today, 148, 283-289(2009). https://doi.org/10.1016/j.cattod.2009.09.019
  12. Yoon, S. H., Kang, I. Y., Bae, G. Y. and Bae, J. Y., "Effect of the Molar $H_{2}O$/C and Molar $O_{2}$/C Ratio on Long-Term Performance of Diesel Autothermal Reformer for Solid Oxide Fuel Cell," J. Kor. Electrochem. Soc., 10(2), 110-115(2007). https://doi.org/10.5229/JKES.2007.10.2.110
  13. Avraam, D. G., Halkides, T. I., Liguras, D. K., Bereketidou, O. A. and Goula, M. A., "An experimental and theoretical approach for the biogas steam reforming reaction," Int. J. Hydrogen Energy, 35, 9818-9827(2010). https://doi.org/10.1016/j.ijhydene.2010.05.106
  14. Kolbitsch, P., Pfeifer, C. and Hofbauer, H., "Catalytic steam reforming of model biogas," Fuel, 87, 701-706(2008). https://doi.org/10.1016/j.fuel.2007.06.002

피인용 문헌

  1. Characteristics of a Plasma-Dump Combustor for VOC Destruction vol.37, pp.8, 2015, https://doi.org/10.4491/KSEE.2015.37.8.492
  2. Development of a Plasma-Dump Combustor for VOCs Destruction vol.12, pp.1, 2016, https://doi.org/10.7849/ksnre.2016.03.12.1.3