Effect of Water Back-flushing Condition in Hybrid Water Treatment Process of Carbon Fiber Microfiltration Membrane and Photocatalyst

탄소섬유 정밀여과막 및 광촉매 혼성 수처리 공정에서 물 역세척 조건의 영향

  • Park, Jin Yong (Dept. of Environmental Sciences & Biotechnology, Hallym University) ;
  • Cho, Gwang Hee (Dept. of Environmental Sciences & Biotechnology, Hallym University)
  • 박진용 (한림대학교 환경생명공학과) ;
  • 조광희 (한림대학교 환경생명공학과)
  • Received : 2012.06.20
  • Accepted : 2012.06.28
  • Published : 2012.06.29

Abstract

The effect of water back-flushing period (FT) was investigated in hybrid process of carbon fiber microfiltration membrane and photocatalyst for advanced drinking water treatment in this study, and compared with the previous study using alumina ultrafiltration membrane. The FT was changed in the range of 2~10 min with fixed 10 sec of BT. Then, the FT effects on resistance of membrane fouling ($R_f$), permeate flux (J) and total permeate volume ($V_T$) were observed during total filtration time of 180 min. As decreasing FT, $R_f$ decreased and J increased, which was same with the previous result using alumina ultrafiltration membrane. The treatment efficiency of turbidity was high beyond 99.2%, and the effect of FT was not shown on treatment efficiency of turbidity, which was different with the previous result. The treatment efficiency of organic matters was the lowest value of 65.6% at NBF, and it increased as decreasing FT, which was different with the previous result, too. The reason was that the membrane fouling phenomena could show a different mechanism depending on ceramic membrane materials.

본 연구에서는 정수처리용 탄소섬유 정밀여과막 및 광촉매의 혼성공정에서 물 역세척 주기(FT) 변화의 영향을 알아보고, 알루미나 한외여과막을 사용한 기존의 결과와 비교하였다. 물 역세척 시간(BT)는 10초로 고정한 채, FT를 2~10분으로 변화시키면서, 그 영향을 180분 운전 후 막오염에 의한 저항($R_f$), 투과선속(J)과 총여과부피($V_T$) 측면에서 고찰하였다. FT가 감소할수록, $R_f$는 감소하고 J는 증가하여 알루미나 한외여과막을 사용한 기존의 결과와 동일하였다. 탁도의 처리효율은 99.2% 이상으로 높게 나타났으며, FT 변화에 의한 영향이 보이지 않아 기존의 결과와는 달랐다. 한편, 유기물의 처리효율은 NBF 조건에서 65.6%로 가장 낮았으며 FT가 감소할수록 증가하여 기존의 결과와 역시 다른 현상을 보였다. 이런 차이를 보인 것은 세라믹 분리막의 재질의 차이로 인한 막오염 현상이 다른 기작을 보이기 때문인 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. H. Zhang, X. Quan, S. Chen, H. Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006). https://doi.org/10.1016/j.seppur.2005.11.018
  2. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of $TiO_2$ photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted depositionmethod and their selfcleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003).
  3. K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
  4. H. C. Oh, "Photocatalytic degradation characteristics of organic matter by highly pure $TiO_2$ nanocrystals", Master Dissertation, Kangwon National Univ., Chuncheon, Korea (2006).
  5. J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Dissertation, Yeungnam Univ., Daegu, Korea (2004).
  6. C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).
  7. R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004). https://doi.org/10.1016/j.cep.2004.01.008
  8. T. H. Bae and T. M. Tak, "Effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 249, 1 (2005). https://doi.org/10.1016/j.memsci.2004.09.008
  9. R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  10. K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  11. G. S. Cong and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalys t: 1. effect of photocatalyst and water back-flushing condition", Membrane Journal, 21, 127 (2011).
  12. H. C. Lee, "Hybrid process development of ceramic microfiltration and activated carbon adsorption for advanced water treatment of high turbidity source", Master Dissertation, Hallym Univ., Chuncheon, Korea (2008).
  13. T. Y. Chiu and A. E. James, "Critical flux determination of non-circular multi-channel ceramic membranes using $TiO_2$ suspensions", J. Membr. Sci., 254, 295 (2005). https://doi.org/10.1016/j.memsci.2005.01.037
  14. M. H. Kim and J. Y. Park, "Membrane fouling control effect of periodic water-back-flushing in the tubular carbon ceramic ultrafiltration system for recycling paper wastewater", Membrane Journal, 11, 190 (2001).
  15. H. J. Hwang and J. Y. Park, "Effect of periodic $TiO_2$-back-flushing in paper wastewater treatment using carbon ceramic ultrafiltration and microfiltration membranes", Membrane Journal, 12, 11 (2002).