Gas Permeation Properties of Hydrocarbon/$N_2$ Mixture through PEI-PDMS Hollow Fiber Composite Membranes

Hydrocarbon/$N_2$ 혼합물의 분리를 위한 PEI-PDMS 중공사 복합막의 기체 투과 특성

  • Lee, Chung Seop (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Cho, Eun Hye (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Ha, Seong Yong (Airrane Co. Ltd.) ;
  • Rhim, Ji Won (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University)
  • 이충섭 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 조은혜 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 하성용 ((주)에어레인) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과)
  • Received : 2012.08.01
  • Accepted : 2012.08.27
  • Published : 2012.08.31

Abstract

For the separation and recovery of n-pentane from nitrogen environment, the poly (dimethyl siloxane) (PDMS) composite membranes supported by polyetherimide (PEI) hollow fiber membranes were prepared. To characterize the gas separation properties of the resulting membranes, the permeance of n-pentane and nitrogen, concentrations of permeate and retentate, and recovery ratio were measured for n-pentane and nitrogen mixtures. The permeance of n-pentane and nitrogen, 2485.3 and 9.9 GPU, were observed respectively. As the stage cut decreases and the feed concentration increases, the n-pentane concentration in permeate tends to increase. In the meanwhile, the recovery efficiency tends to increase as the stage cut increases and the feed concentration decreases.

n-Pentane의 분리 및 회수를 위해 분리막의 제조가 용이하고 유기용매에 대한 내용매성이 있는 polyetherimide (PEI)를 지지체로 poly (dimethyl siloxane) (PDMS)를 코팅하여 중공사 복합막을 제조하였다. 제조된 기체 분리막의 특성을 알아보기 위하여 n-Pentane과 질소를 이용하여 공급농도와 stage cut의 변화에 따른 n-pentane과 질소의 투과도, permeate, retentate의 농도, 농축도, 회수율을 측정하였다. n-pentane과 질소의 투과도는 각각 2485.3, 9.9 GPU를 나타내었고, stage cut이 감소하고 공급농도가 증가할수록 투과측의 n-pentane 농도는 증가하는 경향을 나타내었다. 반면 회수효율의 경우에는 stage cut이 증가할수록 공급농도가 감소할수록 증가하는 경향을 나타내었다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. B. K. Sea, Y. S. Na, and S. K. Song, "Technologies for volatile organic compounds (VOCs) treatment", J. Environmental Sci., 12(7), 825 (2003).
  2. H. J. Lim and T. Y. Kim, "Technology of VOCs removal by using oxidation complex compounds", Prospectives of Industrial Chemistry, 5, 33 (2002).
  3. S. H. Lee, C. K. Yeom, H. Y. Song, and J. M. Lee, "Influence of concentration polarization phenomenon on the vapor permeation behavior of $VOCs/N_2$ mixture through PDMS membrane", Membrane Journal, 11, 1 (2001).
  4. R. Atkinson, "Atmospheric chemistry of $VOC_s$ and $NO_x$ ", Atmos. Environ., 34, 12 (2000).
  5. Y. M. Kim, S. Harrad, and R. M. Harrison, "Concentrations and sources of vocs in urban domestic and public microenvironments", Environ. Sci. Technol., 35, 6 (2001).
  6. M. J. Ruhl, "Recover VOCs via adsorption on ac-tivated carbon", Chem. Eng. Prog., 89, 7 (1993).
  7. S. Y. Ha, "Preparation method of gas separation membrane and gas separation membrane prepared therefrom", KR Patent 1008356550000, May 30 (2008).
  8. S. A. Stern, "Polymer for gas separation: The next decade", J. Membr. Sci., 94, 1 (1994). https://doi.org/10.1016/0376-7388(94)00141-3
  9. L. M. Robeson, "Polymer membranes for gas separation", Curr. Solid State Mater. Sci., 4, 549 (1999). https://doi.org/10.1016/S1359-0286(00)00014-0
  10. H. C. Koh, S. Y. Ha, and S. Y. Nam, "Prepatation and properties of hollow fiber membrane for gas separation usion CTA", Membrane Journal, 21, 98 (2010).
  11. S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Koh, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation and properties of chlorine-resistance loose reverse osmosis hollow fiber membrane", Membrane Journal, 20, 304 (2010).
  12. H. C. Koh, S. Y. Ha, S. M. Woo, S. Y. Nam, B. S. Lee, C. S. Lee, and W. M. Choi, "Sepatation and purification of bio gas by hollow fiber gas separation membrane module", Membrane Journal, 21, 2 (2011).
  13. M. Dr. Heinz-Joachim and F. Elizabeth, "Modified membrane", Au Patent 2002214802B2, July 25 (2002).
  14. J. Phattaranawik, R. Jiraratananon, and A. G. Fane, "Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation", J. Membr. Sci., 215, 75 (2003). https://doi.org/10.1016/S0376-7388(02)00603-8
  15. S. H. Lee, C. K. Yeom, H. Y. Song, and J. M. Lee, "Influence of concentration polarization phenomenon on the vapor premeation behavior of $VOCs/N_2$ mixture through PDMS membrane", Membrane Journal, 11, 1 (2001).
  16. C. K. Yeom, S. H. Lee, J. H. Choi, and J. M. Lee, "Evaluation of concentration polarization at feed in the permation of $VOCs/N_2$ mixtures through PDMS membrane", Membrane Journal, 11, 2 (2001).