Studies on the Fouling Reduction through the Coating of Poly (vinyl alcohol) on Polyamide Reverse Osmosis Membrane Surfaces

역삼투막 표면에 폴리비닐알코올 코팅을 통한 파울링 현상 감소연구

  • Kim, Il Hyoung (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Ji, Eun Hee (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Rhim, Ji Won (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Cheong, Seong Ihl (College of Life Science & Nano Technology, Department of Chemical Engineering & Nano-Bio Technology, Hannam University)
  • 김일형 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 지은희 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과) ;
  • 정성일 (한남대학교 대덕밸리캠퍼스 생명.나노과학대학 나노생명화학공학과)
  • Received : 2012.07.22
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

The neutral polymer, poly (vinyl alcohol) (PVA), was coated onto polyamide (PA) thin film composite reverse osmosis (RO) membranes. And then these membranes were investigated for the model foulants, bovine serum albumin (BSA), humic acid (HA), and sodium alginate (SA) whether there are aome improvement. As the operating pressure increased with 2, 4, 8 atm for BSA, HA and SA 100 ppm in feed solution, the fouling phenomena was worse for both none and PSSA coated membranes. The fouling occurred in the sequence of BSA > HA > SA due to the interactions between PVA snd functional groups of foulants, and on the other hand the fouling reduction was observed in the order of HA > BSA > SA. The observation of scanning electron microscopy photographs showed the same trend. As a result, there should be the improvement of fouling phenomena for the PVA coated RO membranes and the case of HA was shown distinct.

본 연구에서는 폴리아마이드 역삼투 복합막 표면에 중성 친수성 고분자인 poly (vinyl alcohol) (PVA)를 코팅한 후 모델 오염물질인 bovine serum albumin (BSA), humic acid (HA), sodium alginate (SA)에 대하여 파울링 개선 효과가 있는지를 알아보고자 하였다. 고분자의 파울링 유도를 위해 모델 오염물질인 BSA, HA, SA 등이 100 ppm으로 용해된 공급원액을 2, 4, 8 atm 조건에서 PVA 코팅된 막과 코팅되지 않은 막에 대하여 파울링 실험을 수행한 결과. 압력이 증가함에 모든 오염물질에 대해서 파울링은 심화되었다. 파울링 심화 현상은 BSA > HA > SA의 순으로 일어났으며, PVA가 코팅된 막에 대해 파울링 개선효과는 HA > BSA > SA의 순으로 나타났다. 전자현미경 사진 결과에서도 같은 경향을 보여주고 있다. 결국, PVA가 코팅된 역삼투막은 어느 경우에서나 파울링 개선효과는 뚜렷하게 있었으며 HA의 경우에서 가장 두드러졌다.

Keywords

Acknowledgement

Supported by : 한남대학교

References

  1. N. W. Kim, "Study of surface properties on fouling resistance of reverse osmosis membranes", Membrane Journal, 12, 28 (2002).
  2. J. M. Kavanagh, S. Hussain, T. C. Chilcott, and H. G. L. Coster, "Fouling of reverseosmosis membranes using electrical impedance spectroscopy: Measurements and simulations", Desalination, Vol. 236, 187 (2009). https://doi.org/10.1016/j.desal.2007.10.066
  3. K. G. Tay and L. Song, "A more effective method for fouling characterization in a full-scale reverse osmosis process", Desalination, Vol. 177, 95 (2005). https://doi.org/10.1016/j.desal.2004.11.017
  4. W. Stumm, Aquatic colloids as chemical reactants. Surface structure and reactivity. Colloids Surf, A, 73, 1 (1993). https://doi.org/10.1016/0927-7757(93)80003-W
  5. J. Buffle and G. Leppard, "Characterization of aquatic colloids and macromolecules. 1.Structure and begavior of colloidal material", Environ. Sci. Technol., 29, 2169 (1995). https://doi.org/10.1021/es00009a004
  6. P. Bacchin and P. Aimar, "Field RW. Critical and sudtainable fluxes: theory, experiments and applications", J. Membr. Sci., 281, 22 (2006).
  7. R. Chan, V. Chen, and M. P. Bucknall, "Quantitative analysis of membrane fouling by protein mixtures using MALDI-MS", Biotechnol. Bioeng., 85, 190 (2004). https://doi.org/10.1002/bit.10866
  8. T. Maruyama, S. Katoh, M. Nakajima, H. Nabetani, T. Abbott, A. Shono, and K. Satoh, "FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes", J. Membr. Sci., 192, 201 (2001). https://doi.org/10.1016/S0376-7388(01)00502-6
  9. L. Palacio, C.-C. Ho, and A. L. Zydney, "App- lication of a pore-blockage-cakefiltration model to protein fouling during microfiltration", Biotechnol. Bioeng., 79, 260 (2002). https://doi.org/10.1002/bit.10283
  10. S. T. Kelly and A. L. Zydney, "Mechanisms for BSA fouling during microfiltration", J. Membr. Sci., 107, 115 (1995). https://doi.org/10.1016/0376-7388(95)00108-O
  11. C. Guell and R. H. Davis, "Membrane fouling during microfiltration of protein mixtures", J. Membr. Sci., 119, 119 (1996).
  12. S. S. Park, H. J. Seo, and J. H. Kim, "Behavior of NOM fouling in submerged photocatalytic membrane reactor combined with $TiO_2$ nanoparticles", Membrane Journal, 21, 1 (2011).
  13. I. C. Kim, J. G. Choi, N. S. Choi, J. H. Kim, and T. M. Tak, "Synthesis of sulfonated polyethersulfone membrane material for ultrafiltration by heterogeneous sulfonation and fouling reduction effect", Membrane Journal, 18, 4, 210 (1998).
  14. S. G. Gholap, C. S. Gopinath, and M. Bader, "Molecular origins of wettability of hydrophobic poly (vinylidene fluoride) microporous membranes on poly (vinyl alcohol) adsorption: Surface and interface analysis by XPS", J. Phys. Chem. B, 19, 13942 (2005).
  15. C. Zhang, F. Yang, W. Wang, and B. Chen, "Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol)", Sep. Purif. Tech., 61, 276 (2008). https://doi.org/10.1016/j.seppur.2007.10.019
  16. J. Economy, J. Wang, and C. Ba, "Design of advanced reverse osmosis and nanofiltration membranes for water purification", Nanotechnology Applications for Clean Water (1958).
  17. Y. Yang, L. Wan, and Z. Xu, "Surface hydrophilization of microporous polypropylene membrane by the interfacial crosslinking of polyethylenimine", J. Membr. Sci., 337, 70 (2009). https://doi.org/10.1016/j.memsci.2009.03.023
  18. H. Matsumoto, Y. Koyama, and A. Tanioka, J. Colloid Interf. Sci., 264, 82 (2003). https://doi.org/10.1016/S0021-9797(03)00417-X
  19. W. Ang and M. Elimelech, "Protein (BSA) fouling of reverse osmosis membrane: Implications for wastewater reclamation", J. Membr. Sci., 296, 83 (2007). https://doi.org/10.1016/j.memsci.2007.03.018
  20. Y. N. Wang and C. Y. Tang, "Protein fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes-The role of hydrodynamic conditions, solution chemistry, and membrane properties", J. Membr. Sci., 376, 275 (2011). https://doi.org/10.1016/j.memsci.2011.04.036
  21. Z. Wang, Y. Zhao, J. Wang, and S. Wang, "Studies on nanofiltration membrane fouling in the treatment of water solutions containing humic acids", Desalination, 178, 171 (2005). https://doi.org/10.1016/j.desal.2004.11.036