DOI QR코드

DOI QR Code

Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals

  • Received : 2012.04.09
  • Accepted : 2012.07.30
  • Published : 2012.12.28

Abstract

Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals.

Keywords

References

  1. Abriouel, H., C. Franz, N. B. Omar, and A. Galvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35: 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
  2. Amara, N., B. P. Krom, G. F. Kaufmann, and M. M. Meijler. 2011. Macromolecular inhibition of quorum sensing: Enzymes, antibodies and beyond. Chem. Rev. 111: 195-208. https://doi.org/10.1021/cr100101c
  3. Ansaldi, M., D. Marolt, T. Stebe, I. Mandic-Mulec, and D. Dubnau. 2002. Specific activation of the Bacillus quorumsensing systems by isoprenylated pheromone variants. Mol. Microbiol. 44: 1561-1573. https://doi.org/10.1046/j.1365-2958.2002.02977.x
  4. Bais, H. P., R. Fall, and J. M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319. https://doi.org/10.1104/pp.103.028712
  5. Brötz, H., G. Bierbaum, K. Leopold, P. E. Reynolds, and H. G. Sahl. 1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42: 154-160.
  6. Chen, X. H., A. Koumoutsi, R. Scholz, A. Eisenreich, K. Schneider, I. Heinemeyer, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014. https://doi.org/10.1038/nbt1325
  7. Chen, X. H., J. Vater, J. Piel, P. Franke, R. Scholz, K. Schneider, et al. 2006. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42. J. Bacteriol. 188: 4024-4036. https://doi.org/10.1128/JB.00052-06
  8. Christiaen, S., G. Brackman, H. J. Nelis, and T. Coenye. 2011. Isolation and identification of quorum quenching bacteria from environmental samples. J. Microbiol. Methods 87: 213-219. https://doi.org/10.1016/j.mimet.2011.08.002
  9. Cooper, G. R. and A. Moir. 2011. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168. J. Bacteriol. 193: 2261-2267. https://doi.org/10.1128/JB.01397-10
  10. Cutting, S. M. 2011. Bacillus probiotics. Food Microbiol. 28: 214-220. https://doi.org/10.1016/j.fm.2010.03.007
  11. Czajkowski, R. and S. Jafra. 2009. Quenching of acylhomoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim. Pol. 56: 1-16.
  12. Duc, L. H., H. A. Hong, T. M. Barbosa, A. O. Henriques, and S. M. Cutting. 2004. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70: 2161-2171. https://doi.org/10.1128/AEM.70.4.2161-2171.2004
  13. Fuchs, S. W., T. W. Jaskolla, S. Bochmann, P. Kotter, T. Wichelhaus, M. Karas, et al. 2011. Entianin, a novel subtilinlike lantibiotic from Bacillus subtilis subsp. spizizenii DSM15029 with high antimicrobial activity. Appl. Environ. Microbiol. 77: 1698-1707. https://doi.org/10.1128/AEM.01962-10
  14. Fuqua, C. and E. P. Greenberg. 2002. Listening in on bacteria: Acyl-homoserine lactone signalling. Nat. Rev. 3: 685-695. https://doi.org/10.1038/nrm907
  15. Griffiths, K., J. Zhang, A. E. Cowan, J. Yu, and P. Setlow. 2011. Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol. Microbiol. 81: 1061-1077. https://doi.org/10.1111/j.1365-2958.2011.07753.x
  16. Gould, G. W. 1969. Germination, pp. 397-444. In G. W. Gould and A. Hurst (eds.). The bacterial spore, Academic Press, London, England.
  17. Guez, J. S., C. H. Muller, P. M. Danze, J. Buchs, and P. Jacques. 2008. Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J. Biotechnol. 134: 121-126. https://doi.org/10.1016/j.jbiotec.2008.01.003
  18. He, H., L. A. Silo-Suh, J. Clardy, and J. Handelsman. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35: 2499-2502. https://doi.org/10.1016/S0040-4039(00)77154-1
  19. Herzner, A. M., J. Dischinger, C. Szekat, M. Josten, S. Schmitz, A. Yakeleba, et al. 2011. Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS ONE 6(7): e22389. https://doi.org/10.1371/journal.pone.0022389
  20. Higgins, D. and J. Dworkin. 2012. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36: 131-148. https://doi.org/10.1111/j.1574-6976.2011.00310.x
  21. Hofemeister, J., B. Conrad, B. Adler, B. Hofemeister, J. Feesche, N. Kucheryava, et al. 2004. Genetic analysis of the biosynthesis of non-ribosomal peptide and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol. Genet. Genomics 272: 363-378. https://doi.org/10.1007/s00438-004-1056-y
  22. Igarashi, T. and P. Setlow. 2006. Transcription of the Bacillus subtilis gerK operon, which encodes a spore germinant receptor, and comparison with that of operons encoding other germinant receptors. J. Bacteriol. 188: 4131-4136. https://doi.org/10.1128/JB.00265-06
  23. Inglesby, T. V., T. O'Toole, D. A. Henderson, J. G. Bartlett, M. S. Ascher, E. Eitzen, et al. 2002. Anthrax as a Biological Weapon. JAMA 287: 2236-2252. https://doi.org/10.1001/jama.287.17.2236
  24. Kanhere, A. and M. Vingron. 2009. Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes. BMC Evol. Biol. 9: 9 https://doi.org/10.1186/1471-2148-9-9
  25. Kearns, D. B., F. Chu, R. Rudner, and R. Losick. 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55: 739-749.
  26. Kinsinger, R. F., M. C. Shirk, and R. Fall. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185: 5627-5631. https://doi.org/10.1128/JB.185.18.5627-5631.2003
  27. Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromonedependent regulation of antimicrobial peptide production in gram-positive bacteria: A case of multicellular behavior. Peptides 22: 1579-1596. https://doi.org/10.1016/S0196-9781(01)00493-4
  28. Kleerebezem, M., L. E. Quadri, O. P. Kuipers, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two component signal-transduction systems in gram-positive bacteria. Mol. Microbiol. 24: 895-904. https://doi.org/10.1046/j.1365-2958.1997.4251782.x
  29. Kloepper, J. W., C. M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94: 1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  30. Lee, H. and H. Y. Kim. 2011. Lantibiotics, class I bacteriocins from the genus Bacillus. J. Microbiol. Biotechnol. 21: 229-235.
  31. Li, H., X. Wang, M. Han, Z. Zhao, M. Wang, Q. Tang, et al. 2012. Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afri. J. Biotechnol. 11: 231-242.
  32. Lopez, D., H. Vlamakis, R. Losick, and R. Kolter. 2009. Paracrine signaling in a bacterium. Genes Dev. 23: 1631-1638. https://doi.org/10.1101/gad.1813709
  33. Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptack. 1992. Surfactin/Iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051. https://doi.org/10.1016/0300-9084(92)90002-V
  34. Malone, C. L., B. R. Boles, and A. R. Horswill. 2007. Biosynthesis of Staphylococcus aureus autoinducing peptides by using the Synechocystis DnaB Mini-Intein. Appl. Environ. Microbiol. 73: 6036-6044. https://doi.org/10.1128/AEM.00912-07
  35. Mayville, P., G. Ji, R. Beavis, H. Yang, M. Goger, R. P. Novick, and T. W. Muir. 1999. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA 96: 1218-1223. https://doi.org/10.1073/pnas.96.4.1218
  36. McPherson, D. C., H. Kim, M. Hahn, R. Wang, P. Grabowski, P. Eichenberger, and A. Driks. 2005. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J. Bacteriol. 187: 8278-8290. https://doi.org/10.1128/JB.187.24.8278-8290.2005
  37. Moir, A. 2006. How do spores germinate? J. Appl. Microbiol. 101: 526-530. https://doi.org/10.1111/j.1365-2672.2006.02885.x
  38. Moldenhauer, J., D. C. G. Gotz, C. R. Albert, S. K. Bischof, K. Schneider, R. D. Sussmuth, et al. 2010. The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42: Direct evidence for ${\beta}$,${\gamma}$ dehydration by a trans-acyltransferase polyketide synthase. Angew. Chem. Int. Ed. 49: 1465-1467. https://doi.org/10.1002/anie.200905468
  39. Mongkolthanaruk, W., G. R. Cooper, J. S. P. Mawer, R. N. Allan, and A. Moir. 2011. Effect of amino acid substitutions in the GerAA protein on the function of the alanine responsive germinant receptor of Bacillus subtilis spores. J. Bacteriol. 193: 2268-2275. https://doi.org/10.1128/JB.01398-10
  40. Nicholson, W. L. 2002. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59: 410-416. https://doi.org/10.1007/s00018-002-8433-7
  41. Nicholson, W. L., N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572. https://doi.org/10.1128/MMBR.64.3.548-572.2000
  42. Oman, T. J., J. M. Boettcher, H. Wang, X. N. Okalibe, and W. A. Donk. 2011. Sublancin is not a lantibiotic but an S-linked glycopeptides. Nat. Chem. Biol. 7: 78-80. https://doi.org/10.1038/nchembio.509
  43. Ongena, M. and P. Jacques. 2007. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
  44. Ongena, M., J. Emmanuel, A. Adam, M. Paquot, A. Brans, B. Joris, et al. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x
  45. Park, S. J., S. Y. Park, C. M. Ryu, S. H. Park, and J. K. Lee. 2008. The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence. J. Microbiol. Biotechnol. 18: 1518-1521.
  46. Park, S. Y., S. J. Lee, T. K. Oh, J. W. Oh, B. T. Koo, D. Y. Yum, and J. K. Lee. 2003. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149: 1541-1550. https://doi.org/10.1099/mic.0.26269-0
  47. Pelczar, P. L. and P. Setlow. 2008. Localization of the germination protein GerD to the inner membrane in Bacillus subtilis spores. J. Bacteriol. 190: 5635-5641. https://doi.org/10.1128/JB.00670-08
  48. Pottathil, M., A. Jung, and B. A. Lazazzera. 2008. CSF, a species-specific extracellular signaling peptide for communication among strains of Bacillus subtilis and Bacillus mojavensis. J. Bacteriol. 190: 4095-4099. https://doi.org/10.1128/JB.00187-08
  49. Raaijmakers, J. M., I. Bruijn, O. Nybroe, and M. Ongena. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol. Rev. 34: 1037-1062.
  50. Reiss, R., J. Ihssen, and L. Thöny-Meyer. 2011. Bacillus pumilus laccase: A heat stable enzyme with a wide substrate spectrum. BMC Biotechnol. 11: 9 https://doi.org/10.1186/1472-6750-11-9
  51. Roche, D. M., J. T. Byers, D. S. Smith, F. G. Glansdrop, D. R. Spring, and M. Welch. 2004. Communication blackout? Do Nacylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiology 150: 2023-2028. https://doi.org/10.1099/mic.0.26977-0
  52. Romero, D., A. Vicente, R. Rakotoaly, S. Dufour, J. Veening, E. Arrebola, et al. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 20: 430-440. https://doi.org/10.1094/MPMI-20-4-0430
  53. Ryan, R. P. and J. M. Dow. 2008. Diffusible signals and interspecies communication in bacteria. Microbiology 154: 1845-1858. https://doi.org/10.1099/mic.0.2008/017871-0
  54. Schneider, K., X. C. Chen, J. Vater, P. Franke, J. Nicholson, R. Borriss, and R. D. Süssmuth. 2007. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70: 1417-1423. https://doi.org/10.1021/np070070k
  55. Setlow, B., A. E. Cowan, and P. Setlow. 2003. Germination of spores of Bacillus subtilis with dodecylamine. J. Appl. Microbiol. 95: 637-648. https://doi.org/10.1046/j.1365-2672.2003.02015.x
  56. Setlow, P. 2006. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101: 514-525. https://doi.org/10.1111/j.1365-2672.2005.02736.x
  57. Shank, E. A. and R. Kolter. 2011. Extracellular signaling and multicellularity in Bacillus subtilis. Curr. Opin. Microbiol. 14: 741-747. https://doi.org/10.1016/j.mib.2011.09.016
  58. Tam, N. K., N. Q. Uyen, H. A. Hong, L. H. Duc, T. T. Hoa, C. R. Serra, et al. 2006. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188: 2692-2700. https://doi.org/10.1128/JB.188.7.2692-2700.2006
  59. Uroz, S., S. R. Chhabra, M. Camara, P. Williams, P. Oger, and Y. Dessaux. 2005. N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151: 3313-3322. https://doi.org/10.1099/mic.0.27961-0
  60. Velho, R. V., D. G. Caldas, L. F. Medina, S. M. Tsai, and A. Brandelli. 2011. Real-time PCR investigation on the expression of sboA and ituD genes in Bacillus spp. Lett. Appl. Microbiol. 52: 660-666. https://doi.org/10.1111/j.1472-765X.2011.03060.x
  61. Vollenbroich, D., G. Pauli, M. Ozel, and J. Vater. 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 63: 44-49.
  62. Xu, D. and J. Cote. 2003. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3' end 16S rDNA and 5' end 16S-23S ITS nucleotide sequences. Int. J. Syst. Evol. Microbiol. 53: 695-704. https://doi.org/10.1099/ijs.0.02346-0
  63. Zhou, Y., Y. L. Choi, M. Sun, and Z. Yu. 2008. Novel roles of Bacillus thuringiensis to control of plant diseases. Appl. Microbiol. Biotechnol. 80: 563-572. https://doi.org/10.1007/s00253-008-1610-3

Cited by

  1. Microbial Diversity in Soil under Potato Cultivation from Cold Desert Himalaya, India vol.2013, pp.None, 2012, https://doi.org/10.1155/2013/767453
  2. Genomic and Enzymatic Results Show Bacillus cellulosilyticus Uses a Novel Set of LPXTA Carbohydrases to Hydrolyze Polysaccharides vol.8, pp.4, 2012, https://doi.org/10.1371/journal.pone.0061131
  3. ComQXPA Quorum Sensing Systems May Not Be Unique to Bacillus subtilis : A Census in Prokaryotic Genomes vol.9, pp.5, 2014, https://doi.org/10.1371/journal.pone.0096122
  4. Draft Genome Sequence of Bacillus subtilis Strain NKYL29, an Antimicrobial-Peptide-Producing Strain from Soil vol.2, pp.6, 2012, https://doi.org/10.1128/genomea.01140-14
  5. Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin vol.99, pp.2, 2015, https://doi.org/10.1007/s00253-014-6199-0
  6. Isolation and characterization of thermophilic bacterial strains from Soldhar (Tapovan) hot spring in Central Himalayan Region, India vol.65, pp.3, 2015, https://doi.org/10.1007/s13213-014-0984-y
  7. Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist's Perspective vol.6, pp.None, 2012, https://doi.org/10.3389/fmicb.2015.01336
  8. Detection of biosurfactants in Bacillus species: genes and products identification vol.119, pp.4, 2012, https://doi.org/10.1111/jam.12893
  9. Draft Genome Sequences of 10 Bacillus subtilis Strains That Form Spores with High or Low Heat Resistance vol.4, pp.2, 2012, https://doi.org/10.1128/genomea.00124-16
  10. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4 vol.101, pp.9, 2017, https://doi.org/10.1007/s00253-017-8095-x
  11. Managing gut health without reliance on antimicrobials in poultry vol.57, pp.11, 2017, https://doi.org/10.1071/an17288
  12. Mechanism of anti- Vibrio activity of marine probiotic strain Bacillus pumilus H2, and characterization of the active substance vol.7, pp.1, 2012, https://doi.org/10.1186/s13568-017-0323-3
  13. Effects of Bacillus subtilis and zinc on the growth performance, internal organ development, and intestinal morphology of male broilers with or without subclinical coccidia challenge vol.97, pp.11, 2012, https://doi.org/10.3382/ps/pey262
  14. Microbial metabolomics: essential definitions and the importance of cultivation conditions for utilizing Bacillus species as bionematicides vol.127, pp.2, 2012, https://doi.org/10.1111/jam.14218
  15. Effects of Bacillus subtilis and coccidial vaccination on cecal microbial diversity and composition of Eimeria-challenged male broilers vol.98, pp.9, 2012, https://doi.org/10.3382/ps/pez096
  16. Extreme environments: a source of biosurfactants for biotechnological applications vol.24, pp.2, 2012, https://doi.org/10.1007/s00792-019-01151-2
  17. From Farm to Fingers: an Exploration of Probiotics for Oysters, from Production to Human Consumption vol.12, pp.2, 2012, https://doi.org/10.1007/s12602-019-09629-3
  18. Dysbiosis in the Gut Microbiota of Soil Fauna Explains the Toxicity of Tire Tread Particles vol.54, pp.12, 2012, https://doi.org/10.1021/acs.est.0c00917
  19. Research Note: Effect of butyric acid glycerol esters on ileal and cecal mucosal and luminal microbiota in chickens challenged with Eimeria maxima vol.99, pp.10, 2012, https://doi.org/10.1016/j.psj.2020.06.022
  20. Rhamnolipids and surfactin inhibit the growth or formation of oral bacterial biofilm vol.20, pp.1, 2012, https://doi.org/10.1186/s12866-020-02034-9
  21. Changes in the Distribution of Intrauterine Microbiota May Attribute to Immune Imbalance in the CBA/J×DBA/2 Abortion-Prone Mice Model vol.12, pp.None, 2012, https://doi.org/10.3389/fimmu.2021.641281
  22. The structure characteristic of IAA n-acetyl-transferase enzyme produced by two species of bacteria (Bacillus subtilis and Bacillus amyloliquefaciens) vol.762, pp.1, 2012, https://doi.org/10.1088/1755-1315/762/1/012054
  23. Prevalence of virulence genes and antibiotic susceptibility of Bacillus used in commercial aquaculture probiotics in China vol.21, pp.None, 2021, https://doi.org/10.1016/j.aqrep.2021.100784
  24. Australian bush medicines harbour diverse microbial endophytes with broad‐spectrum antibacterial activity vol.131, pp.5, 2012, https://doi.org/10.1111/jam.15122
  25. The Effect of Microbial Fertilizer on the Growth, Rhizospheric Environment and Medicinal Quality of Fritillaria taipaiensis vol.7, pp.11, 2021, https://doi.org/10.3390/horticulturae7110500