DOI QR코드

DOI QR Code

Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time

  • Haque, Md. Azizul (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Barman, Dhirendra Nath (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kang, Tae Ho (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Min Keun (Gyeongsangnam-do Agricultural Research and Extension Service) ;
  • Kim, Jungho (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University) ;
  • Yun, Han Dae (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
  • Received : 2012.06.22
  • Accepted : 2012.08.14
  • Published : 2012.12.28

Abstract

This work was conducted to evaluate the effect of dilute sodium hydroxide (NaOH) on barley straw at boiling temperature and fractionation of its biomass components into lignin, hemicellulose, and reducing sugars. To this end, various concentrations of NaOH (0.5% to 2%) were applied for pretreatment of barley straw at $105^{\circ}C$ for 10 min. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy studies revealed that 2% NaOH-pretreated barley straw exposed cellulose fibers on which surface granules were abolished due to comprehensive removal of lignin and hemicellulose. The X-ray diffractometer (XRD) result showed that the crystalline index was increased with increased concentration of NaOH and found a maximum 71.5% for 2% NaOH-pretreated sample. The maximum removal of lignin and hemicellulose was 84.8% and 79.5% from 2% NaOH-pretreated liquor, respectively. Reducing sugar yield was 86.5% from 2% NaOH-pretreated sample using an enzyme dose containing 20 FPU of cellulase, 40 IU of ${\beta}$-glucosidase, and 4 FXU of xylanase/g substrate. The results of this study suggest that it is possible to produce the bioethanol precursor from barley straw using 2% NaOH at boiling temperature.

Keywords

References

  1. Adney, B. and J. Baker. 2008. Measurement of cellulase activities. Laboratory analytical procedure (LAP). Technical Report NREL/TP-510-42628. Available at http://www.nrel.gov/bio mass/pdfs/42628.pdf.
  2. Antizar-Ladislao, B. and J. L. Turrion-Gomez. 2008. Secondgeneration biofuels and local bioenergy systems. Biofuels Bioprod. Biorefin. 2: 455-469. https://doi.org/10.1002/bbb.97
  3. Bailey, M. J., P. Bailey, and K. Poutanen. 1992. Interlaboratory testing of methods for xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  4. Banerjee, G., S. Car, J. S. Scott-Craig, M. S. Borrusch, N. Aslam, and J. D. Walton. 2010. Synthetic enzyme mixtures for biomass deconstruction: Production and optimization of a core set. Biotechnol. Bioeng. 106: 707-720. https://doi.org/10.1002/bit.22741
  5. Bura, R., R. Chandra, and J. Saddler. 2009. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol. Prog. 25: 315-322. https://doi.org/10.1002/btpr.98
  6. Fan, L. T., M. M. Gharpuray, and Y. H. Lee. 1987. Cellulose Hydrolysis. In: Biotechnology Monographs. Springer, Berlin, Germany.
  7. Fox, D. J., P. P. Gray, N. W. Dunn, and W. L. Marsden. 1989. Comparison of alkali and steam (acid) pretreatments of lignocellulosic materials to increase enzymic susceptibility: Evaluation under optimised pretreatment conditions. J. Chem. Tech. Biotechnol. 44: 135-146.
  8. Gustafsson, J., L. Ciovica, and J. Peltonen. 2003. The ultra structure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer 44: 661-670. https://doi.org/10.1016/S0032-3861(02)00807-8
  9. Hendriks, A. T. W. M. and G. Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  10. Hong, J., X. Ye, and Y. H. P. Zhang. 2007. Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir 23: 12535-12540. https://doi.org/10.1021/la7025686
  11. Jeoh, T., C. I. Ishizawa, M. F. Davis, M. E. Himmel, W. S. Adney, and D. K. Johnson. 2007. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98: 112-122. https://doi.org/10.1002/bit.21408
  12. Jeon, B. Y. and D. H. Park. 2010. Improvement of ethanol production by electrochemical redox combination of Zymomonus mobilis and Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 20: 94-100.
  13. Kabel, M. A., G. Bos, J. Zeevalking, A. G. J. Voragen, and H. A. Schols. 2007. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 98: 2034-2042. https://doi.org/10.1016/j.biortech.2006.08.006
  14. Kakurakova, M. and R. H. Wilson. 2001. Developments in midinfrared spectroscopy of selected carbohydrates. Carbohydr. Polym. 44: 291-303. https://doi.org/10.1016/S0144-8617(00)00245-9
  15. Kashahara, K., H. Sasaki, N. Donkai, T. Yoshihara, and T. Takagishi. 2001. Modification of tencel with treatment of ferric sodium tartrate complex solution. I. Effect of treatment condition. Cellulose 8: 23-28. https://doi.org/10.1023/A:1016637307450
  16. Kim, S. and M. T. Holtzapple. 2005. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96: 1994-2006. https://doi.org/10.1016/j.biortech.2005.01.014
  17. Kim, S. and M. T. Holtzapple. 2006. Effect of structural features on enzyme digestibility of corn stover. Bioresour. Technol. 97: 583-591. https://doi.org/10.1016/j.biortech.2005.03.040
  18. Kim, T. H. and Y. Y. Lee. 2005. Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour. Technol. 96: 2007-2013. https://doi.org/10.1016/j.biortech.2005.01.015
  19. Kim, Y., A. Yu, M. Han, G. W. Choi, and B. Chung. 2011. Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Appl. Biochem. Biotechnol. 163: 143-152. https://doi.org/10.1007/s12010-010-9023-z
  20. Latif, F., K. A. Malik, and J. Puls. 1988. Effect of steam and alkali pretreatment on the enzymatic hydrolysis of plants grown in saline soils. Biomass 17: 105-113. https://doi.org/10.1016/0144-4565(88)90074-1
  21. Li, Q., Y. C. He, M. Xian, G. Jun, X. Xu, J. M. Yang, and L. Z. Li. 2009. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 100: 3570-3575. https://doi.org/10.1016/j.biortech.2009.02.040
  22. Lin, L., R. Yan, Y. Liu, and W. Jiang. 2010. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicelluloses and lignin. Bioresour. Technol. 101: 8217-8223. https://doi.org/10.1016/j.biortech.2010.05.084
  23. Lin, S. 1992. Methods in Lignin Chemistry. Springer-Verlag, Heidelberg, Germany.
  24. Lioyd, T. A. and C. E. Wyman. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96: 1967-1977. https://doi.org/10.1016/j.biortech.2005.01.011
  25. Liu, C. and C. E. Wyman. 2005. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 96: 1978-1985. https://doi.org/10.1016/j.biortech.2005.01.012
  26. Liu, L., J. Sun, M. Li, S. Wang, H. Pei, and J. Zhang. 2009. Enhanced enzymatic hydrolysis and structural features of corn stover by $FeCl_3$ pretreatment. Bioresour. Technol. 100: 5853-5858. https://doi.org/10.1016/j.biortech.2009.06.040
  27. Liu, Z., Y. Ni, P. Fatehi, and A. Saeed. 2011. Isolation and cationization of hemicellulose from pre-hydrolysis liquor of kraft-based dissolving pulp production process. Biomass Bioenerg. 35: 1789-1796. https://doi.org/10.1016/j.biombioe.2011.01.008
  28. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  29. Montane, D., J. Salvado, and X. Farriol. 1997. Fractionation of wheat straw via steam-explosion pretreatment. Characteristics of the lignin obtained by alkali delignification of the steamed straw. Holzforschung 51: 135-141. https://doi.org/10.1515/hfsg.1997.51.2.135
  30. Montane, D., X. Farriol, J. Salvado, P. Jollez, and E. Chornet. 1998. Fractionation of wheat straw by steam-explosion pretreatment and alkali delignification. Cellulose pulp and byproducts from hemicellulose and lignin. J. Wood Chem. Technol. 18: 171-191. https://doi.org/10.1080/02773819809349575
  31. Mosier, N., R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993. https://doi.org/10.1016/j.biortech.2005.01.013
  32. Person, T., J. L. Ren, E. Joelsson, and A. S. Jonsson. 2009. Fractionation of wheat and barley straw to access highmolecularmass hemicelluloses prior to ethanol production. Bioresour. Technol. 100: 3906-3913. https://doi.org/10.1016/j.biortech.2009.02.063
  33. Segal, L., J. J. Creely, Jr. A. E. Martin, and C. M. Conrad. 1962. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Tex. Res. J. 29: 786-794.
  34. Sendich, E., M. Laser, S. Kim, H. Alizadeh, L. Laureano-Perez, and B. Dale. 2008. Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresour. Technol. 99: 8429-8435. https://doi.org/10.1016/j.biortech.2008.02.059
  35. Simola, J., P. Malkavaara, R. Alen, and J. Peltonen. 2000. Scanning probe microscopy of pine and birch kraft pulp fibres. Polymer 41: 2121-2126. https://doi.org/10.1016/S0032-3861(99)00379-1
  36. Simola-Gustafsson, J., B. Hortling, and J. Peltonen. 2001. Scanning probe microscopy and enhanced data analysis on lignin and elemental chlorine-free or oxygen-delignified pine kraft pulp. Colloid Polym. Sci. 279: 221-231. https://doi.org/10.1007/s003960000410
  37. Sun, X. F., F. Xu, R. C. Sun, P. Flower, and M. S. Baird. 2005. Charateristics of degraded cellulose obtained from steam exploded wheat straw. Carbohydr. Res. 340: 97-106. https://doi.org/10.1016/j.carres.2004.10.022
  38. Teymouri, F., L. Laureano-Perez, H. Alizadeh, and B. Dale. 2005. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 96: 2014-2018. https://doi.org/10.1016/j.biortech.2005.01.016
  39. Vancov, T. and S. McIntosh. 2011. Alkali pretreatment of cereal crop residues for second generation biofuels. Energ. Fuel. 25: 2754-2763. https://doi.org/10.1021/ef200241s
  40. Vincent, M., A. L. Pometto III, and J. V. Leeuwen. 2011. Simultaneous saccharification and fermentation of ground corn strover for the production of fuel ethanol using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011. J. Microbiol. Biotechnol. 21: 703-710. https://doi.org/10.4014/jmb.1010.10044
  41. Wang, B., X. Wang, and H. Feng. 2010. Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water. Bioresour. Technol. 10: 752-760.
  42. Wisniewska, S. K., J. Nalaskowski, E. Witka-Jezewska, J. Hupka, and J. D. Miller. 2003. Surface properties of barley straw. Colloids Surf. 29: 131-142. https://doi.org/10.1016/S0927-7765(02)00178-9
  43. Xu, C., F. Ma, X. Zhang, and S. Chen. 2010. Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J. Agric. Food Chem. 58: 10893-10898. https://doi.org/10.1021/jf1021187
  44. Xu, F., C. F. Liu, Z. C. Geng, J. X. Sun, R. C. Sun, B. H. Hei, L. Lin, S. B. Wu, and J. Je. 2006. Characterisation of degraded organosolv hemicellulose from wheat straw. Polym. Degrad. Stab. 91: 1880-1886. https://doi.org/10.1016/j.polymdegradstab.2005.11.002
  45. Yang, B. and C. E. Wyman. 2008. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. 2: 26-40. https://doi.org/10.1002/bbb.49
  46. Yoshida, M., Y. Liu, S. Uchida, K. Kawarada, Y. Ukagmi, H. Ichinose, S. Kaneko, and K. Fukuda. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosacharides. Biosci. Biotechnol. Biochem. 72: 805-810. https://doi.org/10.1271/bbb.70689
  47. Zhang, Y. H. P. 2008. Reviving the carbohydrate economy via multiproduct lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 3: 367-375.

Cited by

  1. Growth and Fermentation Characteristics of Saccharomyces cerevisiae NK28 Isolated from Kiwi Fruit vol.23, pp.9, 2012, https://doi.org/10.4014/jmb.1307.07050
  2. Comparison of Different Pretreatment Strategies for Ethanol Production of West African Biomass vol.175, pp.5, 2012, https://doi.org/10.1007/s12010-014-1444-7
  3. Biorefinery Scheme for Residual Biomass Using Autohydrolysis and Organosolv Stages for Oligomers and Bioethanol Production vol.30, pp.10, 2012, https://doi.org/10.1021/acs.energyfuels.6b00277
  4. Utilizing pretreatment and fungal incubation to enhance the nutritional value of canola meal vol.123, pp.2, 2012, https://doi.org/10.1111/jam.13507
  5. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis vol.8, pp.None, 2012, https://doi.org/10.1038/s41598-018-19517-5
  6. From nano- to micrometer scale: the role of microwave-assisted acid and alkali pretreatments in the sugarcane biomass structure vol.11, pp.None, 2012, https://doi.org/10.1186/s13068-018-1071-6
  7. Effect of alkaline pretreatments on the enzymatic hydrolysis of wheat straw vol.26, pp.35, 2012, https://doi.org/10.1007/s11356-019-06822-3
  8. Effect of p -TsOH pretreatment on separation of bagasse components and preparation of nanocellulose filaments vol.7, pp.9, 2020, https://doi.org/10.1098/rsos.200967
  9. Determination of the Kinetics and Thermodynamic Parameters of Lignocellulosic Biomass Subjected to the Torrefaction Process vol.14, pp.24, 2012, https://doi.org/10.3390/ma14247877
  10. Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives vol.343, pp.None, 2012, https://doi.org/10.1016/j.biortech.2021.126123