DOI QR코드

DOI QR Code

Origin of kaersutite in the basalt from Jeju Island(I): Biseokgeori hawaiite

제주도 현무암 내 각섬석의 성인에 대한 연구(I): 비석거리 하와이아이트

  • Yun, Sung-Hyo (Department of Earth Science Education, Pusan National University) ;
  • Cha, Jun-Seok (Department of Earth Science Education, Pusan National University) ;
  • Koh, Jeong-Seon (Department of Earth Science Education, Pusan National University) ;
  • Lee, Sang Won (Department of Earth Science Education, Pusan National University)
  • 윤성효 (부산대학교 지구과학교육과) ;
  • 차준석 (부산대학교 지구과학교육과) ;
  • 고정선 (부산대학교 지구과학교육과) ;
  • 이상원 (부산대학교 지구과학교육과)
  • Received : 2012.05.28
  • Accepted : 2012.08.13
  • Published : 2012.09.30

Abstract

Hawaiite which distributed in Sanjideungdae of Sarabong cinder cone and Biseokgeori area in northern part of Jeju island, contains phenocrysts of titanium-rich hornblende (kaersutite) and plagioclase with microphenocrysts of olivine, pyroxene and very small amounts of K-feldspar lath and apatite. Kaersutite is mostly euhedral or subhedral phenocrysts having opaque reaction rim. And kaersutite in Sanjideungdae area completely replaced to opaque minerals showing pseudomorph. Also it may be seen partly replacement of pyroxene by kaersutire as reaction rim. It is considered that hydration reaction had occurred with fluids. The crystallization pressure of kaersutite using pressure-$Al^T$ geobarometer is approximately 6.3 kb in Sanjideungdae area and 4.9 kb in Biseokgeori area, respectively. As a result, fluid injection to magma and crystallization of kaersutite of Sanjideungdae hawaiite is deeper than that of Biseokgeori hawaiite, and it was growed to phenocrysts through crystallization. It is estimated that kaersutite of Biseokgeori hawaiite originated from crystallization from the host magma, based on the euhedral nature of the phenocrysts and on the presence of apatite inclusions.

제주도 사라봉 부근의 산지등대, 비석거리에서 나타나는 하와이아이트에는 티탄이 풍부한 각섬석(캘수타이트)과 사장석이 반정으로 나타난다. 또한 휘석, 감람석 미반정을 포함하며, 인회석과 소량의 K장석 래스도 나타난다. 캘수타이트는 자형 또는 반자형으로 불투명광물 반응연을 가진 반정으로 주로 산출되며, 해안가 시료의 캘수타이트는 산화철 형태로 치환되어 각섬석 가상을 관찰할 수 있다. 아주 드문 형태로 휘석 결정 내에 캘수타이트가 반응연 관계로 나타나는 형태를 볼 수 있으며, 이를 통해 유체에 의한 2차적인 수화반응이 있었음이 추정된다. 압력-$Al^T$ 지질압력계 관계식에 적용하여 결정화작용 압력을 추정한 결과, 산지등대의 시료에서는 약 6.3 kb, 비석거리의 경우 약 4.9 kb의 값을 얻을 수 있었다. 이를 통해 산지등대의 각섬석은 비석거리에 형성된 각섬석보다 더 깊은 곳에서 유체의 유입이 있었으며, 자형 반정의 형태와 인회석 포유물의 존재로부터 호스트마그마로부터 결정화작용을 통해 성장되었을 것으로 추정된다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. 고보균, 원종관, 이문원, 손인석, 2000, 제주도 사라봉-별도봉-화북봉 일원의 화산층서 및 화산암의 특성. 한국지구과학회 2000년도 추계학술발표 논문요약집, 94p.
  2. 고보균, 원종관, 이문원, 손인석, 2001, 제주도 사라봉-별도봉-화북봉 일원의 화산층서와 화산암의 특성. 한국지구과학회지, 22(1), 1-9.
  3. 김상욱, 황상구, 양판석, 이윤종, 고인석, 1999, 채약산 현무암질암류의 암석학적인 특징 및 각섬석 지질압력계의 적용. 암석학회지, 8(2), 92-105.
  4. 박기화, 이병주, 조등룡, 김정찬, 이승렬, 김유봉, 최현일, 황재하, 송교영, 최범영, 조병욱, 1998, 제주.애월도폭 지질보고서(1:50,000). 제주도, 한국자원연구소, 290 p.
  5. Anderson, J.L. and Smith, D.R., 1995, The effects of temperature and oxygen fugacity on the Al-in hornblende barometer. American Mineralogist, 80, 549-559.
  6. Best, M.G., 1970, Kaersutite-peridotite inclusions and kindred megacrysts in basanitic lavas, Grand Canyon, Arizona. Contributions to Mineralogy and Petrology, 27, 25-44. https://doi.org/10.1007/BF00539539
  7. Best, M.G., 1974, Mantle-derived amphibole within inclusions in alkali basaltic lavas. Journal of Geophysical Research, 79, 2107-2113. https://doi.org/10.1029/JB079i014p02107
  8. Binns, R.A., Duggan, M.B. and Wilkinson J.F.G., 1970, High pressure megacrysts in alkaline lavas from northeastern New South Wales with chemical analyses by G.I.Z. Kalocsai, American Journal of Science, 269, 132-168. https://doi.org/10.2475/ajs.269.2.132
  9. Cross, C. and J. R. Holloway, 1974, A megacryst bearing alkali basalt, San Carlos, Arizona. Geological Society of America Abstracts with Programs, 6, 437.
  10. Dawson, J.B., 1984, Contrasting types of upper mantle metasomatism?. In Kornprobst, J. (Ed.) Developments in Petrology, vol. II: Kimberlites. Elsevier Science, Amsterdam, 289-294.
  11. Droop, G.T.R., 1987, A general equation for estimating $Fe^{3+}$ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
  12. Harte, B., 1983, Mantle peridotites and processes: The kimberlite sample. In C.J. Hawkesworth and M.J. Norry, Eds., Continental basalts and mantle xenoliths, Shiva, Nantwich, U.K., 46-91.
  13. Johnson, M.C. and Rutherford, M.J., 1989, Experimental calibration of the aluminum- in-hornblende geobarometer with application to Long Valley caldera(California) volcanic rocks. Geology, 17(9), 837-841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
  14. Merrill, R.B. and Wyllie, P.J., 1975, Kaersutite and kaersutite eclogite from Kakanuii, New Zealand: Water-excess and water-deficient melting to 30 kilobars. Geological Society of America Bulletin, 86, 555-570. https://doi.org/10.1130/0016-7606(1975)86<555:KAKEFK>2.0.CO;2
  15. Popp, R.K., Virgo, D., Yoder, H.S.Jr., Hoering, T.C. and Phillips, M.W., 1995, An experimental study of phase equilibria and Fe oxy-component in kaersutitic amphibole: Implications for the$f_{H2}$ and $a_{H2O}$ in the upper mantle. American Mineralogist, 80, 534-548.
  16. Robinson, P., Spear, F.S., Schumacher, J.C., Laird, J., Klein, C., Evans, B.W. and Doolan, B.L., 1982, Phase relations of metamorphic amphiboles: Natural occurrence and theory, in Veblen, D.R. and Ribbe, P.H. ed., Amphiboles: Petrology and experimental phase relations. Reviews in Mineralogy, 9B. 1-227.
  17. Rutherford, M.J., 1993, Experimental Petrology applied to volcanic precess. EOS, 74(5), 49, 55.
  18. Wilkinson, J.EG. and LeMaitre, RW., 1987, Upper mantle amphiboles and micas, and $TiO_{2}$ $K_{2}O$, and $P_{2}O_{5}$ abundances, and 100Mg/$(Mg+Fe^{2+})$ ratios of common basalts and andesites: Implications for modal mantle metasomatism and undepleted mantle com- positions. Journal of Petrology, 28(1), 37-73. https://doi.org/10.1093/petrology/28.1.37
  19. Wilshire, H.G. and Shervais, J.W., 1975, Al-augite and Crdiopside ultramafic xenoliths in basaltic rocks from western United States: Structural and textural relationships. Physics and Chemistry of the Earth, 9, 257-272. https://doi.org/10.1016/0079-1946(75)90021-X