References
- F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, Heidelberg, 2000.
- H.I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.
- C. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly , Can. Entomol., 91, (1959), pp. 293-320. https://doi.org/10.4039/Ent91293-5
- C. Holling,"The characteristics of simple type of predation and parasitism", Canadian Entomologist 91, (1959), pp. 385-398. https://doi.org/10.4039/Ent91385-7
- C. Holling,"The functional response of predators to prey density and its role in mimicry and population regulation ", Mem. Entomol. Soc. Can., 45, (1965), pp. 3-60.
- W.O. Kermack and A.G. McKendrick,"A Contribution to the Mathematical Theory of Epidemics", Proc. Roy. Soc. A, 115, (1927) pp. 700-721. https://doi.org/10.1098/rspa.1927.0118
- W.O. Kermack and A.G. McKendrick,"A Contribution to the Mathematical Theory of Epidemics", Proc. Roy. Soc. A, 138, (1932), pp. 55-83. https://doi.org/10.1098/rspa.1932.0171
- W.O. Kermack and A.G. McKendrick,"A Contribution to the Mathematical Theory of Epidemics", Proc. Roy. Soc. A, 41, (1933), pp. 94-122.
- M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, UK, 2001.
- A.J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.
- J.D. Murray, Mathematical biology, Springer-Verlag, Heidelberg (1989).
- M. Rosenzweig,"Paradox of enrichment: destabilization of exploitation ecosystems in ecological time", Science, 171, (1971), pp. 385-387. https://doi.org/10.1126/science.171.3969.385
- S.A. Shim, Hopf Bifurcation Properties of Holling Type Predator-Prey Systems, Honam Mathematical Journal 30, (2008), no. 3, pp. 293-320.
- V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, 1926. Translated by R.N. Chapman, Animal Ecology, pp. 409-448, McGraw-Hill, New York, 1931.