DOI QR코드

DOI QR Code

Synthesis and Characterization of Wholly Aromatic Polyester Liquid Crystalline Thermosets

전방향족 폴리에스터 열경화성 액정의 합성과 특성

  • Moon, Hyun-Gon (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Jung, Myung-Sup (Advanced Materials Lab, Samsung Advanced Institute of Technology) ;
  • Chang, Jin-Hae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
  • 문현곤 (금오공과대학교 에너지융합소재공학부) ;
  • 정명섭 ((주)삼성종합기술원 첨단소재 연구실) ;
  • 장진해 (금오공과대학교 에너지융합소재공학부)
  • Received : 2011.04.29
  • Accepted : 2011.07.04
  • Published : 2012.01.25

Abstract

We prepared a series of aromatic liquid crystals (LCs) based on wholly aromatic ester units with the reactive end group methyl maleimide by means of melt condensation method, and the resulting LCs were thermally crosslinked to produce liquid crystalline thermoset (LCT) films. The synthesized LCs and LCTs were characterized with Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermomechanical analysis (TMA), and polarizing optical microscopy (POM) with a hot stage. The glass transition temperature ($T_g$) and coefficient of thermal expansion are strongly affected by the mesogen units in their main chain structures. The $p$-substituted biphenyl LC was found to have the highest thermal property value.

용융법을 이용해서 말단에 가교 반응이 가능한 메틸 말레이미드(methyl maleimide)기를 가진 전방향족 에스터 결합의 액정(liquid crystal, LC)을 합성하였고, 합성된 LC를 이용해서 적당한 열처리 과정을 통해 열경화성 액정(liquid crystalline thermoset, LCT) 필름을 제조하였다. 합성된 LC 및 LCT 필름은 FTIR(Fourier transform infrared) 분광기, WAXD(wide angle X-ray diffraction), DSC(differential scanning calorimetry), TGA(thermogravimetric analysis), TMA(thermomechanical analysis), 그리고 가열판이 장착된 편광 현미경으로 특성 분석을 하였다. 유리전이온도($T_g$)와 열팽창 계수는 주사슬 구조의 메소겐에 의해 강한 영향을 받는 것으로 확인되었고, $para$-로 치환된 비페닐구조를 가진 LCT 필름이 가장 좋은 열적 성질을 보여 주었다.

Keywords

Acknowledgement

Supported by : (주)삼성종합기술원

References

  1. T. S. Chung, M. Cheng, P. K. Pallathadka, and S. H. Goh, Polym. Eng. Sci., 39, 953 (1999). https://doi.org/10.1002/pen.11484
  2. Y.-H. Ahn and J.-H. Chang, Polym. Adv. Technol., 19, 1479 (2008).
  3. H. Ramathal and A. Lawal, J. Appl. Polym. Sci., 89, 2457 (2003). https://doi.org/10.1002/app.12480
  4. P. Sukananta and S. Buallek-Limcharoen, J. Appl. Polym. Sci., 90, 1337 (2003). https://doi.org/10.1002/app.12792
  5. H. S. Chang, T. Y. Wu, and Y. Chen, J. Appl. Polym. Sci., 83, 1536 (2002). https://doi.org/10.1002/app.10058
  6. J.-I. Jin and C. S. Kang, Prog. Polym. Sci., 22, 937 (1997). https://doi.org/10.1016/S0079-6700(97)00013-0
  7. E. Somma and M. R. Novbil, Macromol. Symp., 228, 71 (2005). https://doi.org/10.1002/masy.200551006
  8. Y.- W. Kwon, D. H. Choi, and J.- I. Jin, Polymer(Korea), 29, 523 (2005).
  9. B. K. Chen, S. Y. Tsay, and J. Y. Chen, Polymer, 46, 8624 (2005). https://doi.org/10.1016/j.polymer.2005.06.084
  10. A. Jankowiak, A. Januszko, B. Ringstrand, and P. Kaszynski, Liq. Cryst., 35, 65 (2008). https://doi.org/10.1080/02678290701744561
  11. W. Mormann, M. Brocher, and P. Schwarz, Macromol. Chem. Phys., 198, 3615 (1997). https://doi.org/10.1002/macp.1997.021981124
  12. C. Ortiz, R. Kim, E. Rodighiero, C. K. Ober, and E. J. Kramer, Macromolecules, 31, 4074 (1998). https://doi.org/10.1021/ma971439n
  13. A. Knijnenberg, E. S. Weiser, T. L. StClair, E. Mendes, and T. J. Dingemans, Macromolecules, 39, 6936 (2006). https://doi.org/10.1021/ma060441o
  14. D. Lincoln and E. Douglas, Polym. Eng. Sci., 39, 1903 (1999). https://doi.org/10.1002/pen.11583
  15. A. P. Melissaris and M. H. Litt, Macromolecules, 27, 2675 (1994). https://doi.org/10.1021/ma00088a005
  16. M. H. Litt, W. T. Whang, K. T. Yen, and X. J. Quin, J. Polym. Sci. Part A: Polym. Chem., 31, 183 (1993). https://doi.org/10.1002/pola.1993.080310122
  17. R. A. M. Hikmet and D. J. Broer, Polymer, 32, 1627 (1991). https://doi.org/10.1016/0032-3861(91)90398-3
  18. D. Klosterman, R. Chartoff, T. Tong, and M. Calaska, Thermochim. Acta, 396, 199 (2003). https://doi.org/10.1016/S0040-6031(02)00519-1
  19. M. Iqbal, A. Kijnenberg, H. Pouli, and T. J. Dingemans, Inter. J. Adhes. Adhes., 30, 682 (2010). https://doi.org/10.1016/j.ijadhadh.2010.06.006
  20. C. Carfagna, E. Amendola, and M. Giamberini, Compo. Struc., 27, 37 (1994). https://doi.org/10.1016/0263-8223(94)90064-7
  21. S. H. Cho, J. Y. Lee, and E. P. Douglas, High Perform. Polym., 18, 83 (2006). https://doi.org/10.1177/0954008306056484
  22. H. Ishida and S. Ohbam, Polymer, 46, 5588 (2005). https://doi.org/10.1016/j.polymer.2005.04.080
  23. A. E. Hoyt and B. C. Benicewicz, J. Polym. Sci. Part A: Polym. Chem., 28, 3403 (1990). https://doi.org/10.1002/pola.1990.080281218
  24. A. E. Hoyt and B. C. Benicewicz, J. Polym. Sci. Part A: Polym. Chem., 28, 3417 (1990). https://doi.org/10.1002/pola.1990.080281219
  25. H. Korner, A. Shiota, C. K. Ober, and M. Laus, Chem. Mater., 9, 1588 (1997). https://doi.org/10.1021/cm960642e
  26. W. Mormann and J. G. Zimmermann, Macromolecules, 29, 1105 (1996). https://doi.org/10.1021/ma950435k
  27. Y.-H. Ahn, M.-S. Jung, and J.-H. Chang, Mater. Chem. Phys., 123, 177 (2010). https://doi.org/10.1016/j.matchemphys.2010.03.079
  28. H.-G. Moon, M.-S. Jung, and J.-H. Chang, Macromol. Res., 19, 2 (2011). https://doi.org/10.1007/s13233-011-0108-5
  29. H.-G. Moon, Y.-H. Ahn, and J.-H. Chang, Polymer(Korea), 34, 369 (2010).
  30. J.-I. Jin, J.-H. Chang, and H.-K. Shim, Macromolecules, 22, 93 (1989). https://doi.org/10.1021/ma00191a019
  31. J.-H. Chang, C. H. Ju, and S. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 44, 387 (2005).
  32. A. Shiota and C. K. Ober, Prog. Polym. Sci., 22, 975 (1997). https://doi.org/10.1016/S0079-6700(97)00014-2
  33. W. Mormann and J. Zimmermann, Liq. Cryst., 19, 227 (1995). https://doi.org/10.1080/02678299508031973
  34. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, Brooks/Cole, Thomson Learning Inc, Washington, USA, Chapter 7 (2001).
  35. J. L. Koenig, Spectroscopy of Polymers, Elsevier Science Inc, New York, USA, Chapter 4 (1999).
  36. L. Jin, T. Agag, and H. Ishida, Eur. Polym. J., 46, 354 (2010). https://doi.org/10.1016/j.eurpolymj.2009.09.013
  37. A. J. Gavrin, C. L. Curts, and E. P. Douglas, J. Polym. Sci. Part A: Polym. Chem., 37, 4184 (1999). https://doi.org/10.1002/(SICI)1099-0518(19991115)37:22<4184::AID-POLA18>3.0.CO;2-Q
  38. M.-C. Choi, Y. Kim, and C.-S. Ha, Prog. Polym. Sci., 33, 581 (2008). https://doi.org/10.1016/j.progpolymsci.2007.11.004
  39. I. W. Choi and J.-H. Chang, Polymer(Korea), 34, 391 (2010).