DOI QR코드

DOI QR Code

Modification of the electrical parameters of CNT-doped deformed-helix ferro-electric liquid crystals

  • Sood, Nitin (Materials Physics and Engineering Division, National Physical Laboratory) ;
  • Khosla, Samriti (Liquid Crystals Research Lab, Department of Physics, JCDAV College) ;
  • Singh, Darshan (Department of Physics, Punjabi University) ;
  • Bawa, S.S. (Materials Physics and Engineering Division, National Physical Laboratory)
  • Received : 2012.06.25
  • Accepted : 2012.10.04
  • Published : 2012.12.31

Abstract

Liquid crystals are useful for a wide range of applications due to their exceptional properties. Doping of liquid crystals with carbon nanotubes (CNTs), even at very low concentrations, produces a detectable effect on the liquid crystal (LC) properties that can be very attractive for various functions. In this study, an attempt was made to investigate the effect of CNTs on the electrical properties of a short-pitch and high-spontaneous-polarization ferro-electric LC mixture, FLC-6304, at different temperatures. The inclusion of the CNTs significantly reduced the polarization at temperatures well within the $SmC^*$ phase, but the effect was gradually reversed as the transition temperature was approached. The insertion of the CNTs also reduced the response time and the rotational viscosity of the FLC mixture, which is highly desirable in the LCD industry.

Keywords

References

  1. S. Iijima, Nature (London) 354, 56 (1991). https://doi.org/10.1038/354056a0
  2. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998). https://doi.org/10.1063/1.122477
  3. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, and C.M. Lieber, Science 289, 94 (2000). https://doi.org/10.1126/science.289.5476.94
  4. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000). https://doi.org/10.1126/science.287.5453.622
  5. X. Yu, R. Rajmani, K.A. Stelson, and T. Cui, Sens. Actuators A 132, 626 (2006). https://doi.org/10.1016/j.sna.2006.02.045
  6. R.H. Baughman, A.A. Zakhidov, andW.A. de Heer, Science 297, 787 (2002). https://doi.org/10.1126/science.1060928
  7. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. Mclean, S.R. Lustig, R.E. Richardson, and N.G. Tassi, Nature Mater. 2, 338 (2003). https://doi.org/10.1038/nmat877
  8. X.L. Xie, Y.W. Mai, and X.P. Zhou, Materials Science and Engineering: Reports 49, 89, 2005.
  9. C. Zakri, Liq. Cryst. Today 16 (1), 1 (2007). https://doi.org/10.1080/14645180701514426
  10. P.J. Collings, Liquid Crystals: Nature's Delicate Phase of Matter (Pricenton University Press, Pricenton, 1990).
  11. P.G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1995).
  12. M.D. Lynch and D.L. Patrick, Nano Lett. 2, 1197 (2002). https://doi.org/10.1021/nl025694j
  13. W. Lee, C.Y.Wang, and Y.C. Shih, Appl. Phys. Lett. 85, 513 (2004). https://doi.org/10.1063/1.1771799
  14. H.Y. Chen, W. Lee, and N.A. Clark, Appl. Phys. Lett. 90, 033510 (2007). https://doi.org/10.1063/1.2432294
  15. S.Y. Jeon, S.H. Shin, S.J. Jeong, S.H. Lee, S.H. Jeong, Y.H. Lee, H.C. Choi, and K.J. Kim, Appl. Phys. Lett. 90, 121901 (2007). https://doi.org/10.1063/1.2714311
  16. S.Y. Lu and L.C. Chien, Opt. Exp. 16, 12777 (2008). https://doi.org/10.1364/OE.16.012777
  17. S.Y. Jeon, K.A. Park, I.S. Baik, S.J. Jeong, S.H. Jeong, K.H. An, S.H. Lee, and Y.H. Lee, NANO 2, 41 (2007). https://doi.org/10.1142/S1793292007000350
  18. I.S. Baik, S.Y. Jeon, S.H. Lee, K.A. Park, S.H. Jeong, K.H. An, and Y.H. Lee, Appl. Phys. Lett. 87, 263110 (2005). https://doi.org/10.1063/1.2158509
  19. H.Y. Chen and W. Lee, Appl. Phys. Lett. 88, 222105 (2006). https://doi.org/10.1063/1.2208373
  20. K.A. Park, S.M. Lee, S.H. Lee, and Y.H. Lee, J. Phys. Chem. C 111, 1620 (2007). https://doi.org/10.1021/jp0659960
  21. I. Musevic, R. Blinc, and B. Zeks, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals (World Scientific, Singapore, 2000).
  22. L.M.Blinov and V.G. Chigrinov, Electro-Optic Effects in Liquid Crystals (Springer, New York, 1994).
  23. S.Wrobel, G. Cohen, D. Davidov,W. Haase, M. Marzec, and M. Pfeiffer, Ferroelectrics 166, 211 (1995). https://doi.org/10.1080/00150199508223590
  24. A.M. Biradar, S.Wrobel, and W. Haase, Phy. Rev. A 39 (5), 2693 (1989). https://doi.org/10.1103/PhysRevA.39.2693
  25. K.K. Raina, A.K. Gathania, and B. Singh, Pramana J. Phys. 52 (4), 443 (1999). https://doi.org/10.1007/BF02830110
  26. F. Gouda, K. Skarp, G. Andersson, H. Kresse, and S.T. Lagerwall, Jpn. J. Appl. Phys. 28 (10), 1887 (1989). https://doi.org/10.1143/JJAP.28.1887
  27. Y.P. Panarin, H.X. Seamus, T. Mac Lughadha, and J. K. Vij, Jpn. J. Appl. Phys. 33, 2648 (1994). https://doi.org/10.1143/JJAP.33.2648
  28. M. Marzec, J. Jankowski, I. Sowa-Pawlowski, I. Sowa-Pawlowski,W. Haase, S. Hiller,M. Pfeiffer, J. Oleszkiewicz, and S. Wrobel, Nukleonika 39 (3), 85 (1994).
  29. B. Zeks, T. Carlsson, C. Fillipic, and B. Urbanc, Ferroelectrics 84, 3 (1988). https://doi.org/10.1080/00150198808016209
  30. T. Carlsson, B. Zeks, C. Fillipic, and A. Levstik, Phys. Rev. A 42 (2), 877 (1990). https://doi.org/10.1103/PhysRevA.42.877
  31. T. Carlsson, B. Zeks, C. Fillipic, A. Levstik, and R. Blinc, Mol. Cryst. Liq. Cryst. 163, 11 (1988).
  32. T. Carlsson, B. Zeks, C. Fillipic, and A. Levstik, Phys. Rev. A 36 (3), 1484 (1987). https://doi.org/10.1103/PhysRevA.36.1484
  33. L.A. Beresnev, V.G. Chigrinov, D.I. Dergachev, E.P. Poshidaev, J. Funfschilling, and M. Schadt, Liq Cryst. 5 (4), 1171 (1989). https://doi.org/10.1080/02678298908026421
  34. V.M. Vaksman and Y.P. Panarin, Mol. Mat. 1, 147 (1992).
  35. K.K. Raina and J.K Ahuja, J. Appl. Phy. 39 (4), 4076 (2000). https://doi.org/10.1143/JJAP.39.4076
  36. H. Stegmeyer, A. Sprick, W. Krieser, and A. Weber, Mol. Cryst. Liq. Cryst. 263, 1 (1995). https://doi.org/10.1080/10587259508033565
  37. P.J. Collings, B.R. Ratna, and R. Shashidhar, Phys. Rev. E 67, 021705 (2003). https://doi.org/10.1103/PhysRevE.67.021705
  38. X. Nie, R. Lu, H. Xianyu, T.X. Wu, and S.T. Wu, J. Appl. Phys. 101, 103110 (2007). https://doi.org/10.1063/1.2734870

Cited by

  1. Changing liquid crystalline phase with field vol.43, pp.6, 2012, https://doi.org/10.1080/02678292.2016.1144808