DOI QR코드

DOI QR Code

Synthesis and Properties of Polyimide Composites Containing Graphene Oxide Via In-Situ Polymerization

  • Zhu, Jiadeng (Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Lee, Cheol-Ho (Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Joh, Han-Ik (Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Kim, Hwan Chul (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Lee, Sungho (Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
  • Received : 2012.06.25
  • Accepted : 2012.08.13
  • Published : 2012.10.31

Abstract

In this study, reduced graphene oxide/polyimide (r-GO/PI) composite films, which showed significant enhancement in their electrical conductivity, were successfully fabricated. GO was prepared from graphite using a modified Hummers method. The GO was used as a nanofiller material for the preparation of r-GO/PI composites by in-situ polymerization. An addition of 20 wt% of GO led to a significant decrease in the volume resistivity of composite films by less than nine orders of magnitude compared to that of pure PI films due to the electrical percolation networks of reduced GO created during imidization within the films. A tensile test indicated that the Young's modulus of the r-GO/PI composite film containing 20 wt% GO increased drastically from 2.3 GPa to 4.4 GPa, which was an improvement of approximately 84% compared to that of pure PI film. In addition, the corresponding tensile strength was found to have decreased only by 12%, from 113 MPa to 99 MPa.

Keywords

References

  1. Sazanov YN. Applied significance of polyimides. Russ J Appl Chem, 74, 1253 (2001). http://dx.doi.org/10.1023/a:1013768725369.
  2. Meador MA. Recent advances in the development of processable high-temperature polymers. Annu Rev Mater Sci, 28, 599 (1998). http://dx.doi.org/doi:10.1146/annurev.matsci.28.1.599.
  3. Kim IC, Kim JH, Lee KH, Tak TM. Preparation of soluble polyimides and ultrafiltration membrane performances. J Appl Polym Sci, 75, 1 (2000). http://dx.doi.org/10.1002/(SICI)1097- 4628(20000103)75:1<1::AID-APP1>3.0.CO;2-B.
  4. Jiang X, Bin Y, Matsuo M. Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization. Polymer, 46, 7418 (2005). http://dx.doi. org/10.1016/j.polymer.2005.05.127.
  5. Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol, 63, 1637 (2003). http://dx.doi. org/10.1016/s0266-3538(03)00067-8.
  6. Zhang Q, Wu D, Qi S, Wu Z, Yang X, Jin R. Preparation of ultrafine polyimide fibers containing silver nanoparticles via in situ technique. Mater Lett, 61, 4027 (2007). http://dx.doi.org/10.1016/j. matlet.2007.01.011.
  7. Tang QY, Chen J, Chan YC, Chung CY. Effect of carbon nanotubes and their dispersion on thermal curing of polyimide precursors. Polym Degrad Stab, 95, 1672 (2010). http://dx.doi.org/10.1016/j. polymdegradstab.2010.05.023.
  8. Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA. Graphene filled polymer nanocomposites. J Mater Chem, 21, 3301 (2011). http://dx.doi.org/10.1039/C0JM02708A.
  9. Vaia RA, Wagner HD. Framework for nanocomposites. Mater Today, 7, 32 (2004). http://dx.doi.org/10.1016/s1369-7021(04)00506-1.
  10. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197 (2005). http://dx.doi.org/10.1038/nature04233.
  11. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys, 81, 109 (2009). http://dx.doi.org/10.1103/RevModPhys.81.109.
  12. Compton OC, Nguyen ST. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbonbased materials. Small, 6, 711 (2010). http://dx.doi.org/10.1002/ smll.200901934.
  13. Lee SH, Kim YJ, Kim DH, Ku BC, Joh HI. Synthesis and properties of thermally reduced graphene oxide/polyacrylonitrile composites. J Phys Chem Solids, 73, 741 (2012). http://dx.doi.org/10.1016/j. jpcs.2012.01.015.
  14. Cai WW, Piner RD, Stadermann FJ, Park SJ, Shaibat MA, Ishii Y, Yang DX, Velamakanni A, An SJ, Stoller M, An JH, Chen DM, Ruoff RS. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science, 321, 1815 (2008). http://dx.doi.org/10.1126/science.1162369.
  15. Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisitedII. J Phys Chem B, 102, 4477 (1998). http://dx.doi. org/10.1021/jp9731821.
  16. Park SJ, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol, 4, 217 (2009). http://dx.doi.org/10.1038/ nnano.2009.58.
  17. Dikin DA, Srankovich S, Zimney EJ, Piner RD, Dommett HB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). http:// dx.doi.org/10.1038/nature06016.
  18. Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson LS, Nam JD, Sinh LH, Seppala J. Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer, 52, 5237 (2011). http://dx.doi. org/10.1016/j.polymer.2011.09.033.
  19. Kim GY, Choi MC, Lee D, Ha CS. 2D-aligned graphene sheets in transparent polyimide/graphene nanocomposite films based on noncovalent interactions between poly(amid acid) and graphene carboxylic acid. Macromol Mater Eng, 297, 303 (2012). http:// dx.doi.org/10.1002/mame.201100211.
  20. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci, 35, 1350 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010. 07.005.
  21. Hummers WS Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ ja01539a017.
  22. Luong ND, Pahimanolis N, Hippi U, Korhonen JT, Ruokolainen J, Johansson LS, Nam JD, Seppala J. Graphene/cellulose nanocomposites paper with high electrical and mechanical performances. J Mater Chem, 21, 13991 (2011). http://dx.doi.org/10.1039/ C1JM12134K.
  23. Boroglu MS, Boz I, Gurkaynak MA. Structural characterization of silica modified polyimide membranes. Polym Adv Technol, 17, 6 (2006). http://dx.doi.org/10.1002/pat.674.
  24. Chu HJ, Zhu BK, Xu YY. Preparation and dielectric properties of polyimide foams containing crosslinked structures. Polym Adv Technol, 17, 366 (2006). http://dx.doi.org/10.1002/pat.719.
  25. Bao HQ, Pan YZ, Ping Y, Sahoo NG, Wu TF, Li L, Gan LH. Chitosan- functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 7, 1569 (2011). http://dx.doi.org/10.1002/ smll.201100191.
  26. Jung IH, Dikin D, Park SJ, Cai WW, Mielke SL, Ruoff RS. Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J Phys Chem C, 112, 20264 (2008). http:// dx.doi.org/10.1021/jp807525d.
  27. Schniepp HC, Li JL, McAllister MJ, Sai H, Margarita HA, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 110, 8535 (2006). http://dx.doi.org/10.1021/ jp060936f.
  28. Shen JF, Hu YZ, Li C, Qin C, Shi M, Ye MX. Layer-by-layer selfassembly of graphene nanoplatelets. Langmuir, 25, 6122 (2009). http://dx.doi.org/10.1021/la900126g.
  29. Shen JF, Hu YZ, Li C, Qin C, Ye MX. Synthesis of amphiphilic graphene nanoplatelets. Small, 5, 82 (2009). http://dx.doi. org/10.1002/smll.200800988.
  30. Al-Kandary SH, Ali AAM, Ahmad Z. New polyimide -silica nanocomposites from the sol-gel process using organically-modified silica network structure. J Mater Sci, 41, 2907 (2006). http://dx.doi. org/10.1007/s10853-005-5123-5.
  31. Chen D, Zhu H, Liu T. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl Mater Interfaces, 2, 3702 (2010). http://dx.doi. org/10.1021/am1008437.

Cited by

  1. Graphene oxide/poly(acrylic acid) hydrogel by γ-ray pre-irradiation on graphene oxide surface vol.22, pp.2, 2014, https://doi.org/10.1007/s13233-014-2025-x
  2. Preparation of a functional reduced graphene oxide and carbon nanotube hybrid and its reinforcement effects on the properties of polyimide composites vol.134, pp.11, 2017, https://doi.org/10.1002/app.44575
  3. Polyimide-coated magnetic nanoparticles as a sorbent in the solid-phase extraction of polycyclic aromatic hydrocarbons in seawater samples vol.39, pp.17, 2016, https://doi.org/10.1002/jssc.201600337
  4. Thermal degradation kinetics of polyimide nanocomposites from different carbon nanofillers: Applicability of different theoretical models vol.135, pp.7, 2017, https://doi.org/10.1002/app.45862
  5. Influence of graphene oxide on thermal, electrical, and morphological properties of new achiral polyimide pp.00323888, 2018, https://doi.org/10.1002/pen.24600
  6. Preparation of Polyimide/Graphene Oxide Nanocomposite and Its Application to Nonvolatile Resistive Memory Device vol.10, pp.8, 2018, https://doi.org/10.3390/polym10080901