DOI QR코드

DOI QR Code

대나무/폴리락틱산 바이오복합재료의 기계적, 열적, 충격 및 수분흡수 특성에 미치는 대나무섬유 분쇄의 영향

Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly(lactic acid) Biocomposites

  • 조용범 (금오공과대학교 고분자공학과) ;
  • 조동환 (금오공과대학교 고분자공학과)
  • Cho, Yong Bum (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 투고 : 2012.08.06
  • 심사 : 2012.09.07
  • 발행 : 2012.08.31

초록

본 연구에서는 대나무섬유의 분쇄 유 무에 따라 섬유함량이 각각 30, 40, 50 wt%인 대나무/PLA 펠렛을 압출공정으로 제조하고 사출공정을 통해 대나무/PLA 바이오복합재료를 성형하여 그들의 기계적, 열적, 충격 특성과 수분흡수성을 조사하였다. 대나무/PLA 바이오복합재료의 굴곡탄성률, 인장탄성률, 저장탄성률 및 충격강도는 neat PLA에 비하여 두드러지게 증가되었다. 특히 탄성률은 분쇄된 대나무섬유의 도입에 의하여 더욱 증가하였다. 또한 분쇄한 대나무섬유의 사용이 바이오복합재료의 장시간 동안 측정한 수분에 대한 저항성 증가에 효과적이었다. 대나무섬유의 사용이 neat PLA의 열변형온도를 약 16% 향상시키는 효과를 나타내었으나, 분쇄된 대나무섬유의 사용에 의한 증가는 미미하였다. 분쇄된 대나무섬유의 사용은 바이오복합재료의 인장강도와 충격강도에는 크게 영향을 주지 않았다.

In the present study, bamboo/PLA biocomposites through injection molding process using extruded bamboo/PLA pellets with the fiber contents of 30, 40, and 50 wt% according to the presence and absence of bamboo fiber grinding, respectively, were fabricated and their mechanical, thermal, impact, and water absorption properties were explored. Compared to neat PLA, the flexural modulus, tensile modulus, storage modulus and impact strength of bamboo/PLA biocomposites were considerably increased. In particular, the moduli were further increased by introducing the ground bamboo fibers. In addition, use of the ground bamboo fibers was effective to enhance the long-term water resistance of the biocomposites. The heat treatment temperature of neat PLA was improved by 16% by incorporating the bamboo fibers and the fiber grinding effect was slight. The incorporation of the ground bamboo fibers to PLA did not influence the tensile strength and impact toughness of bamboo/PLA biocomposites.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. W. Liu, L. T. Drzal, A. K. Mohanty, and M. Misra, Composites: Part B, 38, 352 (2007). https://doi.org/10.1016/j.compositesb.2006.05.003
  2. A. K. Mohanty, L. T. Drzal, D. Hokens, and M. Misra, Polym. Mater. Sci. Eng., 85, 594 (2001).
  3. E. Bodros, I. Pillin, N. Montrelay, and C. Baley, Compos. Sci. Technol., 67, 462 (2007). https://doi.org/10.1016/j.compscitech.2006.08.024
  4. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. Technol., 13, 460 (2002).
  5. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003). https://doi.org/10.1016/S0266-3538(03)00096-4
  6. H. L. Bos, J. Müssig, J. A. Martien, and V. D. Oever, Composites: Part A, 37, 1591 (2006). https://doi.org/10.1016/j.compositesa.2005.10.011
  7. S, Lee and S. Wang, Composites: Part A, 37, 80 (2006). https://doi.org/10.1016/j.compositesa.2005.04.015
  8. S. Lee, B. Lee, H. Kim, S. Kim, and Y. G. Eom, Mokchae Konghak, 37, 310 (2009).
  9. K. Okubo, T. Fujii, and Y. Yamanoto, Composites: Part A, 35, 377 (2004). https://doi.org/10.1016/j.compositesa.2003.09.017
  10. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos. Sci. Technol., 68, 424 (2008). https://doi.org/10.1016/j.compscitech.2007.06.022
  11. D. Plackett, T. L. Andersen, W. B. Pedersen, and L. Nielsen, Compos. Sci. Technol., 63, 1287 (2003). https://doi.org/10.1016/S0266-3538(03)00100-3
  12. J. M. Seo, D. Cho, W. H. Park, S. O. Han, T. W. Hwang, C. H. Choi, and S. J. Jung, J. Biobased Mater. Bioener., 1, 331 (2007). https://doi.org/10.1166/jbmb.2007.007
  13. S. G. Ji, W. H. Park, D. Cho, and B. C. Lee, Macromol. Res., 18, 919 (2010). https://doi.org/10.1007/s13233-010-0916-z
  14. A. L. Duigou, P. Davies, and C. Baley, Polym. Degrad. Stabil., 94, 1151 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.03.025
  15. M. J. A. V. D. Oever, B. Beck, and J. Mussig, Composites: Part A, 41, 1628 (2010). https://doi.org/10.1016/j.compositesa.2010.07.011
  16. S. M. Lee, D. Cho, W. H. Park, S. G. Lee, S. O. Han, and L. T. Drzal, Compos. Sci. Technol., 65, 647 (2005). https://doi.org/10.1016/j.compscitech.2004.09.023
  17. S. M. Lee, S. O. Han, D. Cho, W. H. Park, and S. G. Lee, Polym. Polym. Compos., 13, 479 (2005).
  18. S. Serizawa, K. Inoue, and M. Iji, J. Appl. polym. Sci., 100, 618 (2006). https://doi.org/10.1002/app.23377
  19. M. M. Thwe and K. Liao, Composites: Part A, 33, 43 (2002). https://doi.org/10.1016/S1359-835X(01)00071-9
  20. T. Yu, J. Ren, S. Li, and Y. Li, Composites: Part A, 41, 499 (2010). https://doi.org/10.1016/j.compositesa.2009.12.006
  21. A. K. Bledzki, A. Jaszkiewicz, and D. Scherzer, Composites: Part A, 40, 404 (2009).
  22. R. Tokoro, F. G. Shin, and M. W. Yipp, J. Mater. Sci., 24, 3483 (1989). https://doi.org/10.1007/BF02385729
  23. S. Jain and R. Kumar, J. Mater. Sci., 27, 4598 (1992). https://doi.org/10.1007/BF01165993
  24. Y. B. Cho, Fabrication and characterization of bamboo/PLA biocomposites and conductive PLA biocomposites, M. S. Thesis, Kumoh National Institute of Technology, Gumi, Korea (2010).
  25. D. Cho, S. Lee, G. Yang, H. Fukushima, and L. T. Drzal, Macromol. Mater. Eng., 290, 179 (2005). https://doi.org/10.1002/mame.200400281