DOI QR코드

DOI QR Code

식물성 오일 기반 바이오 탄성체의 합성과 특성

Synthesis and Characterization of Bio-Elastomer Based on Vegetable Oils

  • 이혁 (경상대학교 고분자공학과) ;
  • 곽경환 (경상대학교 고분자공학과) ;
  • 김진국 (경상대학교 고분자공학과)
  • Lee, Hyeok (Department of Polymer Science & Enginering, Gyeongsang National University) ;
  • Kwak, Kyung-Hwan (Department of Polymer Science & Enginering, Gyeongsang National University) ;
  • Kim, Jin-Kuk (Department of Polymer Science & Enginering, Gyeongsang National University)
  • 투고 : 2012.01.12
  • 심사 : 2012.01.27
  • 발행 : 2012.03.31

초록

새로운 스타폴리머인 바이오폴리부타디엔은 리빙 음이온중합이라는 고분자의 정밀 합성법을 통하여 분자량, 분자량분포, 조성 및 세부구조를 제어하였다. 리빙 음이온중합에 의해 n-BuLi으로 개시된 polybutadienyllithium(PBDLi)의 연쇄말단이 ESO(Epoxidized Soybean Oil)의 기능성 그룹과 커플링 반응을 일으키며 스타폴리머를 합성한다. 분자량이 1,000/5,000/10,000(g/mol)인 PBDLi을 중합하여 THF존재하에서 반응 후 GPC에 의한 분자량 및 arms분석과 $^1H$-NMR, FT-IR에 의한 고분자 구조 분석을 통하여 바이오폴리부타디엔의 합성을 확인하였다.

Novel bio-polybutadiene polymers with controlled molecular weight (MW), MW distribution, chemical composition and micro structure were synthesized by a living anionic polymerization of butadiene and the subsequent coupling reaction of the thus obtained living polybutadiene and a vegetable oil. Anionic polymerization of butadiene was carried out in THF solvent using n-BuLi initiator. The resulting living polybutadienyllithium polymer was then reacted with epoxidized soybean oil (ESO) to obtain a star-polymer of polybutadiene and vegitable oil. Three different bio-elastomers were prepared by coupling living polybutadienes of MWs 1000, 5000 and 1000g/mol with ESO. The molecular structure and MW of the polybutadienes and bioelastomers were characterized by $^1H$-NMR, FTIR and GPC techniques.

키워드

참고문헌

  1. H. Uyama, M. Kuwabara, T. Tsujimoto, and S. Kobayashi, Biomacromolecules, 4, 211 (2003). https://doi.org/10.1021/bm0256092
  2. S.J. Park, F.L. Jin, and J.R. Lee, Macromol.Chem. Phys., 205, 2048 (2004). https://doi.org/10.1002/macp.200400214
  3. J. Sriupayo, P. Supaphol, J. Blackwell, and R. Rujiravanit, Carbohydr. Polym., 62, 130 (2005). https://doi.org/10.1016/j.carbpol.2005.07.013
  4. Z.S. Liu, S.Z. Erhan, and P.D. Calvert, Composites: Part A, 38, 87 (2007). https://doi.org/10.1016/j.compositesa.2006.01.009
  5. F. Ali, Y.W. Chang, S.C. Kang, and J.Y. Yoon, Polymer Bulletin, 62, 91 (2009). https://doi.org/10.1007/s00289-008-1012-9
  6. J. Zou, X. Chen, Y. Shu, and H. Zhou, Polymer Bull., 66, 318 (2011).
  7. S.Y. Liu, C.Q. Zhang, F.J. Zeng, and Y.R. Wang, China Synthetic Rubber Industry, 29, 227 (2006).
  8. M. Szwarc, Nature, 178, 1168 (1956). https://doi.org/10.1038/1781168a0
  9. H.L.Hsieh, R.P. Quirk, Marcel Dekker : New York, (1996) 71-92.
  10. J.S. Wang and K. Matyjaszewski, Chem.Soc., 117, 5614 (1995). https://doi.org/10.1021/ja00125a035
  11. M.Szwarc, Nature, 176, 1168 (1956).
  12. P. Malcolm, Stevens, Polymer Chem, Oxford University Press, Inc(1990).
  13. K. Matyjaszewski, Polymer Sci., 31, 995 (1993).
  14. O.W.Webster, Science, 251, 887 (1991). https://doi.org/10.1126/science.251.4996.887
  15. M. Morton, Anionic polymerization, New York (1983).
  16. R.J. Flory, Nature, 62, 1561 (1940).
  17. D.J. Bmnell, In Ring-Opening Polymerization : Mechanisms, Catalysis, Structure, Utility, Henser, Munich (1993).