Development of Multi-Frequency Impedance Measurement System for Acupuncture Points and Preliminary Report of Measurement Results

Multi-frequency 자극 방식을 이용한 생체 전기 임피던스 측정 시스템 설계 및 경혈의 전기적 특이성에 대한 고찰

  • Kim, Soo-Byeong (Dept. of Biomedical Engineering. College of Health Science, The Eastern & Western Bio-Medical System Lab, Yonsei University) ;
  • Lee, Na-Ra (Dept. of Biomedical Engineering. College of Health Science, The Eastern & Western Bio-Medical System Lab, Yonsei University) ;
  • Lee, Seung-Wook (Dept. of Biomedical Engineering. College of Health Science, The Eastern & Western Bio-Medical System Lab, Yonsei University) ;
  • Choi, Jun-Young (Dept. of Biomedical Engineering. College of Health Science, The Eastern & Western Bio-Medical System Lab, Yonsei University) ;
  • Lee, Yong-Heum (Dept. of Biomedical Engineering. College of Health Science, The Eastern & Western Bio-Medical System Lab, Yonsei University)
  • 김수병 (연세대학교 보건과학대학 의공학과 동서의료시스템 연구실) ;
  • 이나라 (연세대학교 보건과학대학 의공학과 동서의료시스템 연구실) ;
  • 이승욱 (연세대학교 보건과학대학 의공학과 동서의료시스템 연구실) ;
  • 최준영 (연세대학교 보건과학대학 의공학과 동서의료시스템 연구실) ;
  • 이용흠 (연세대학교 보건과학대학 의공학과 동서의료시스템 연구실)
  • Received : 2012.02.15
  • Accepted : 2012.03.08
  • Published : 2012.03.27

Abstract

Objectives : The purpose of this paper was to suggest new diagnostic method that was to supersede the estimation of electrical properties at acupoints. Thus, we developed the multi- frequencies bioelectrical impedance measurement system so as to analyze the state of bio-ions in body fluid as body compositions, not skin impedance at acupoint. Methods : At low frequency, the current does not penetrate the cell membrane and at high frequency, the current passes through both intracellular and extracellular fluid because of the decreas of cell membrane impedance. To confirm the reflection of composition in extracellular fluid or intracellular fluid of segment such as acupoint, the system was developed to detect the acupoint potential between adjacent two points in the area of LU3, LU4 and LU9 using 5,50 and 200KHz. Results : The detected acupoint potential has been decreased according to elevation of frequency. As a result of correlation of left/right identical acupoint, we observed a high correlation of three types of acupoint potential at multi-frequencies. Moreover, we observed the low correlation at 5KHz, and that was a significant factor to be considered as unbalanced relationship of identical acupoints. Conclusions : On the basis of meridian theoretical point of view, we may infer the acupoint's physiological composition using the multi-frequencies bioelectrical impedance measurement system.

Keywords

References

  1. 木下睛都. 針灸學原論. 日本: 講談社. 1976 : 79.
  2. 송범용, 김경식, 손인철. 합곡(LI4)에 행한 염전보사 침자극이 적외선 체열 촬영을 이용한 수양명대장경의 오수혈과 영향(LI20)영역의 온도변화에 미치는 영향. 대한경락경혈학회지. 2000 ; 17(1) : 47-65.
  3. 송재수, 안성훈, 김재효, 김경식, 손인철. 합곡(LI4) 자침이 곡지(LI11)와 영향(LI20) 영역 온도변화에 미치는 영향. 대한한의학회지. 1998 ; 19(2) : 271-95.
  4. 손영주, 원란, 장혁상, 김용석, 박영배, 손낙원. 전침자극에 의한 흰쥐 중추신경계내 대사활성 변화의 영상화 연구. 대한침구학회지. 2001 ; 18(3) : 56-68.
  5. St-Pierre J, Lemieux I, Vohl MC, Perron P, Tremblay G, Despres JP, et al. Contribution of abdominal obesity and hypertriglyceridemia to impaired fasting glucose and coronary artery disease. Am J Cardiol. 2002 ; 90(1) : 15-8.
  6. Despres JP. Health consequence of visceral obesity. Ann Med. 2001 ; 33(8) : 534-41.
  7. Panotopoulos G, Ruiz JC, Guy-Grand B, Basdevant A. Dual x-ray absorptiometry, bioelectrical impedance, and near infrared interactance in obese women. Med Sci Sports Exerc. 2001 ; 33(4) : 665-70.
  8. 조정환, 전명규. 생체전기저항분석 방법에 의한 신체구성 측정의 원리와 과제. 서울여자대학교 자연과학논문집. 1996 ; 7 : 178-90.
  9. Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Physiol. 1969 ; 27(4) : 531-4.
  10. Deurenberg P, Tagliabue A, Schouten FJ. Multifrequency impedance for the prediction of extracellular water and total body water. Br J Nutr. 1995 ; 73(3) : 349-58.
  11. Lusseveld EM, Peters ET, Deurenberg P. Multifrequency bioelectrical impedance as a measure of differences in body water distribution. Ann Nutr Metab. 1993 ; 37(1) : 44-51.
  12. McNeill G, Fowler PA, Maughan RJ, McGaw BA, Fuller MF, Gvozdanovic D, et al. Body fat in lean and overweight women estimated by six methods. Br J Nutr. 1991 ; 65(2) : 95-103.
  13. Cohen S, Popp FA. Biophoton emission of the human body. J Photochem Photobiol B. 1997 ; 40(2) : 187-9.
  14. Jung HH, Woo WM, Yang JM, Choi C, Lee J, Yoon G, et al. Left-right asymmetry of biophoton emission from hemiparesis patients. Indian J Exp Biol. 2003 ; 41(5) : 452-6.
  15. Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance for body composition. Exerc Sport Sci Rev. 1990 ; 18 : 193-224.
  16. Muraoka Y, Komiya S. Equation for estimating total body water by bioelectrical impedance measurements in Japanese subjects. Ann Physiol Anthropol. 1991 ; 10(4) : 203-10.
  17. Miyatani M, Kanehisa H, Masuo Y, Ito M, Fukunaga T. Validity of estimating limb muscle volume by bioelectrical impedance. J Appl Physiol. 2001 ; 91(1) : 386-94.
  18. Miyatani M, Kanehisa H, Fukunaga T. Validity of bioelectrical impedance and ultrasonographic methods for estimating the muscle volume of the upper arm. Eur J Appl Physiol. 2000 ; 82(5-6) : 391-6.
  19. Nakadomo F. Validation of body composition assessed by bioelectrical impedance analysis. Jpn J Appl Physiol. 1990 ; 20 : 321-30.
  20. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol. 1986 ; 60(4) : 1327-32.
  21. Elsen R, Siu ML, Pineda O, Solomons NW. Sources of variability in bioelectrical impedance determinations in adults. In: Ellis KJ, Yasumura S, Morgan WD, eds. In vivo body composition studies. London: Institute of Physical Sciences in Medicine. 1987 : 184-8.
  22. Deurenberg P, Weststrate JA, Paymans I, van der Kooy K. Factors affecting bioelectrical impedance measurements in humans. Eur J Clin Nutr. 1988 ; 42(12) : 1017-22.
  23. Gomez T, Mole PA, Collins A. Dilution of body fluid electrolytes affects bioelectrical impedance measurements. Sports Medicine, Training and Rehabilitation. 1993 ; 4(4) : 291-8.
  24. Cairns SP, Lindinger MI. Do multiple ionic interactions contribute to skeletal muscle fatigue?. J Physiol. 2008 ; 586(Pt 17) : 4039-54.
  25. Cairns SP, Hing WA, Slack JR, Mills RG, Loiselle DS. Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle. J Appl Physiol. 1998 ; 84(4) : 1395-406.
  26. Quinonez M, Gonzalez F, Morgado-Valle C, DiFranco M. Effects of membrane depolarization and changes in extracellular [K(+)] on the Ca (2+) transients of fast skeletal muscle fibers. Implications for muscle fatigue. J Muscle Res Cell Motil. 2010 ; 31(1) : 13-33.