Synthesis of Conductive Polymer Nano-wires by Porous Membrane Template

다공막 주형에 의한 전도성 고분자 나노와이어의 합성

  • Shin, Hwa-Sup (Department of Engineering Chemistry, Chungbuk National University) ;
  • Youm, Kyung-Ho (Department of Engineering Chemistry, Chungbuk National University)
  • 신화섭 (충북대학교 공과대학 공업화학과) ;
  • 염경호 (충북대학교 공과대학 공업화학과)
  • Received : 2012.02.16
  • Accepted : 2012.02.26
  • Published : 2012.02.29

Abstract

We prepared the highly ordered nano-wires of polypyrrole, polyaniline conductive polymers and polypyrrole/ polyaniline conductive copolymers by templating the anodic aluminum oxide (AAO) porous membrane, in which pore diameter was 20 nm, 100 nm and 200 nm. Those conductive polymers were grown from pore inner surface of AAO membrane forming hollow tubes and then wire structures were formed after 3 hour polymerization. By removing AAO membrane templates using sodium hydroxide solution, the conductive polymer nano-wires were successfully obtained, of which diameter and length were close to the ones of nano-pores in AAO membrane template. Crystallinity and thermal stability of the conductive polymer nano-wires were higher than irregular ones that prepared by solution polymerization. Furthermore, the electrical resistance of conductive polymer nano-wires were reduced by about 4~60% compared with that of the irregular polymers prepared by solution polymerization.

양극산화 알루미나(AAO)막의 나노 사이즈 미세공(세공 크기 20 nm, 10 nm 및 200 nm)을 주형으로 사용하여 전도성 고분자인 폴리피롤, 폴리아닐린 중합체 및 폴리피롤/폴리아닐린 공중합체 나노와이어를 제조하였다. 미세공 주형 내에서 전도성 고분자의 성장은 세공의 벽면을 따라 튜브 형태로서 성장하였으며, 3시간 이후에는 내부가 완전히 채워진 나노와이어가 형성되었다. AAO 막을 수산화나트륨 용액으로 퍼리하여 세공 내에 형성된 전도성 고분자 나노와이어를 회수 하였으며. 회수된 나노와이어�l 직경과 길이는 주형 막의 세공 형상과 일치하였다. 통상의 용액 중합법으로 제조된 전도성 고분자 분말과 비교하여 주형 합성법으로 제조된 전도성 고분자 나노와이어는 결정성과 열적 안정성이 향상되었으며, 전기 저항은 4~60% 감소하였다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. B. Norden and E. Krutmeijer, "The Nobel Prize in Chemistry, 2000: Conductive Polymers", pp. 1-16, Advanced Information Report of The Royal Swedish Academy of Sciences (2000).
  2. M. G. Kanatzidis, "Conductive Polymers", Chem. Eng. News, December 3, 36 (1990).
  3. T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, "Handbook of Conducting Polymers", pp. 193-208, Marcel Dekker, New York, NY (1998).
  4. N. I. Kovtyukhova, B. R. Martina, J. K. N. Mbindyoa, T. E. Mallouka, M. Cabassic, and T. S. Mayer, "Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices", Materials Sci. Eng. C, 19, 255 (2002). https://doi.org/10.1016/S0928-4931(01)00395-2
  5. M. Wan, J. Huang, and Y. Shen, "Microtubes of donducting polymers," Synthetic Metals, 101, 708 (1999). https://doi.org/10.1016/S0379-6779(98)00302-6
  6. S. K. Chakarvarti and J. Vetter, "Template synthesis-A membrane based technology for generation of nano-/micro materials: A review", Radiation Measurements, 29(2), 149 (1998). https://doi.org/10.1016/S1350-4487(98)00009-2
  7. A. Huczko, "Template-based synthesis of nanomaterials", Applied Physics A: Materials science & Processing, 70, 365 (2000). https://doi.org/10.1007/s003390051050
  8. S. H. Hyun, "Present status and preparation technology of ceramic membranes", Membrane Journal, 3(1), 1 (1993).
  9. E. O. Kim, "Application of ceramic membrane", Membrane Journal, 3(1), 12 (1993).
  10. W. Liang and C. R. Martin, "Template synthesis of organic microtubules", J. Am. Chem. Soc., 112, 9666 (1990). https://doi.org/10.1021/ja00182a051
  11. C. R. Martin, "Nanomaterials: A membrane-based synthetic approach", Science, 266, 1961 (1994). https://doi.org/10.1126/science.266.5193.1961
  12. C. R. Martin, "Template synthesis of electronically conducting polymer nanostructures", Acc. Chem. Res., 28, 61 (1995). https://doi.org/10.1021/ar00050a002
  13. Z. Yuan, H. Huang, L. Liu, and S. Fan, "Controlled growth of carbon nanotubes in diameter and shape using template-synthesis method", Chem. Physics Letters, 345, 39 (2001). https://doi.org/10.1016/S0009-2614(01)00854-5
  14. E. Ferain and R. Legras, "Track-etch templates designed for micro-and nanofabrication", Nuclear Instrum. & Methods in Physics Research B., 208, 115 (2003). https://doi.org/10.1016/S0168-583X(03)00637-2
  15. R. La, Z. Hu, H. Lib, X. Shanga, and Y. Yanga "Template synthesis of CeO2 ordered nanowire arrays", Materials Sci. Eng. A, 368, 145 (2004). https://doi.org/10.1016/j.msea.2003.10.279
  16. S. Li, Z. Gang, and L. Lin, "Liquid Phase deposition templates synthesis of nanostructures of anatase titania", Materials Sci. Eng. A, 333, 239 (2002). https://doi.org/10.1016/S0921-5093(01)01844-5
  17. J. Joo, K. T. Park, B. H. Kim, M. S. Kim, S. Y. Lee, C. K. Jeong, J. K. Lee, D. H. Park, W. K. Yi, S. H. Lee, and K. S. Ryu, "Conducting polymer nanotube and nanowire synthesized by using nanoporous template: Synthesis, characteristics, and applications", Synthetic Metals, 135-136, 7 (2003). https://doi.org/10.1016/S0379-6779(02)01021-4
  18. J. H. Koh, J. A. Seo, D. K. Roh, and J. H. Kim, "Formation of silver nanoparticles in polystyreneb-poly(oxyethylene methacrylate) block copolymer membranes", Membrane Journal, 20(1), 55 (2011).
  19. S. H. Yeon and K. H. Youm, "Preparation of silica particles by emulsion-gel process using membrane emulsification", Membrane Journal, 20(2), 87 (2011)
  20. X. Li, X. Zhang, ands H. Li, "Preparation and characterization of pyrrole/aniline copolymer nanofibrils using the template-synthesis method", J. Appl. Polymer Sci., 81, 3002 (2001). https://doi.org/10.1002/app.1750
  21. Y. T. Ravikiran, M. T. Lagare, M. Sairam, N. N. Mallikarjuna, B. Sreedhar, S. K. Manohar, A. G. MacDiarmid, and T. M. Aminabhavi, "Synthesis, characterization and low frequency A.C. conduction of polyaniline/fly ash composites", Synthetic Metals, 156, 1139 (2003).
  22. A. A. Athawale, P. P. Katre, S. V. Bhagwat, and A. H. Dhamane, "Synthesis of polypyrrole nanofibers by ultrasonic waves", J. Appl. Polymer Sci., 108, 2872 (2008). https://doi.org/10.1002/app.27301