고분자 분리막을 이용하여 SF₆/N₂ 혼합 기체에서 SF₆ 분리

고 영 덕·이 형 근*·홍 성 욱[†]

한밭대학교 공과대학 화학공학과, *한국에너지기술연구원, 온실가스연구센터 (2012년 1월 26일 접수, 2012년 2월 28일 수정, 2012년 2월 29일 채택)

Separation of SF₆ from SF₆/N₂ Mixtures Using Polymeric Membranes

Youngdeok Ko, Hyung-Keun Lee*, and Seong Uk Hong[†]

Department of Chemical Engineering, Hanbat National University, Daejeon 305-719, Korea *Greenhouse Gas Research Center, Korea Institute of Energy, Daejeon 305-343, Korea (Received January 14, 2012, Revised February 28, 2012, Accepted February 29, 2012)

요 약: 육불화황(SF₆)은 매우 큰 지구 온난화 효과를 가진다. 따라서, SF₆의 사용을 줄이고 이것을 대기 중으로 방출하는 것을 억제하기 위한 노력이 있어 왔다. 전기 기구에서 SF₆의 사용량을 줄이는 한 가지 방법은 SF₆/N₂ 혼합 기체를 사용 하는 것이다. 혼합 기체에서 SF₆의 농도는 10~60%까지 변화가 가능하다. 그러나, 기구를 분해하거나 수리할 경우에 혼합 기체에서 SF₆를 회수하여야 한다. SF₆의 끓는점이 -60°C 정도로 매우 낮으므로 액화법은 적용하기가 어렵다. 한 가지 가능 한 대안은 분리막을 사용하는 것이다. 본 연구에서는 5가지 고분자에 대해서 육불화황과 질소의 투과 성질에 대해서 조사 하였다. 예를 들면 25°C에서 이축연신 폴리프로필렌(BOPP)에 대한 질소의 투과도는 0.19 barrer인 반면에 육불화황의 투과 도는 0.0012 barrer로써 선택도는 158이었다. SF₆/N₂ 혼합기체에 대한 upper bound가 처음으로 제안되었는데 n = -1.33 and k = 160 (barrer)이었다.

Abstract: SF₆ has an extremely high global worming potential (GWP). Therefore, there has been an effort to reduce the use of SF₆ and its emission into atmosphere. One possible solution for minimizing the use of SF₆ in electrical equipments is utilization of gas mixtures such as SF₆/N₂. The SF₆ concentration in the gas mixture varies from 10 to 60%. However, when the apparatus is repaired or dismantled, we have to recover SF₆ from the gas mixture. Since the boiling point of SF₆ is low (\sim -60°C), the liquefaction method is difficult to apply. One possible alternative is the membrane separation technology. In this study, we investigated the SF₆ and N₂ permeation properties of 5 polymeric membranes. For example, permeability of N₂ in BOPP membrane at 25°C was 0.19 barrer, whereas that of SF₆ was only 0.0012 barrer, resulting in the selectivity of 158. An upper bound for SF₆/N₂ gas pair was suggested for the first time with n = -1.33 and k = 160 (barrer).

Keywords: polymer membrane, global warming potential, upper bound, SF_6/N_2

1. Intoroduction

Due to its very good insulation (dielectric constant of SF_6 is 1.0021 at 20°C, 1.0133 bar, 23.340 MHz) and cut-off properties, pure SF_6 gas has been widely used as an insulation or arc quenching medium in electrical power apparatus working under high voltages. For example, in the electric power industries, pure SF_6 gas is used in gas insulated switchgears (GIS), gas insulated lines (GIL), and gas circuit breakers (GCB). However, SF_6 has an extremely high global worming potential (GWP). When we set GWP of CO_2 as 1, that of SF_6 is 23,900 [1]. Therefore, there has been an effort to reduce the use of SF_6 and its emission into atmosphere. One possible solution for minimizing the

[†]교신저자(e-mail: suhong@hanbat.ac.kr)

use of SF₆ in electrical equipments is utilization of gas mixtures such as SF₆/N₂ [2]. The SF₆ concentration in the gas mixture varies from 10 to 60%. However, when the apparatus is repaired or dismantled, we have to recover SF₆ from the gas mixture. Since the boiling point of SF₆ is low (\sim -60°C), the liquefaction method is difficult to apply [3,4]. One possible alternative is the membrane separation technology [5-7]. There have been little reports on the separation of SF₆/N₂ mixture using polymeric membranes. Yamamoto et al. used polyimide hollow fiber membranes to separate SF₆ from SF₆/N₂ mixtures [8,9], whereas Pittroff and Vondenhof utilized polycarbonate hollow fiber membranes for the separation [10]. Lee et al. also studied the separation chracteristics of SF₆/N₂ mixtures using polysulfone, tetra-bromo polycarbonate, and polyimide hollow fiber membranes [11]. However, all of them used hollow fiber membranes and the upper bound of this gas pair has never been reported.

In this study, we investigated the SF_6 and N_2 permeation properties of 5 polymeric membranes and proposed the trade-off curve for SF_6/N_2 gas mixture for the first time.

2. Theory

For a given pair of gases, the parameters characterizing membrane separation performance are the permeability coefficient, P_A , and the permeation selectivity, $\alpha_{A/B}$. The permeability coefficient is the product of solubility coefficient and diffusivity. The permeation selectivity is the ratio between composition ratio at the permeate side and composition ratio at the feed side. In addition, the permeation selectivity is a product of solubility selectivity and diffusivity selectivity. For the effective and efficient separations, both high permeability and selectivity are desirable since higher permeability decreases the size of the membrane area required to treat agiven amount of gas and higher selectivity results in a higher purity in the product gas.

However, it has been known that there is a reverse

relation between permeability and selectivity and so called "upper bound" exists for each gas pair. According to Robeson [12], the upper bound performance characteristics can be described by an empirical equation; $P_A = k \alpha^n$, where n is the slope of the log P_A versus log $\alpha_{A/B}$ plot and n < 0. In other words, as the selectivity of the polymer for gas A over gas B, $\alpha_{A/B}$, increases, permeability of an upper bound polymer to gas A, P_A , decreases. Freeman showed that the empirical upper bound relationship can be theoretically predicted [13]. For example, the value of 1/n can be predicted from activation energy theory as follows

$$1/n = 1 - (d_{\rm B}/d_{\rm A})^2 \tag{1}$$

where d_B and d_A are molecular diameters of B (less permeable) and A (more permeable) gas molecules, respectively.

3. Experimental

Biaxially oriented polypropylene (BOPP) and linear low density polyethylene (LDPE) are obtained from Samyoung Chemiclas (Korea), while nitrile rubber, natural rubber, and chloroprene are obtained from Alliance Rubber Products (Malaysia). Mixture of SF_6/N_2 (50 : 50) (Special Gas Co., 99.9%) was used as a permeation gas.

Mixed gas permeability coefficients were measured using a GTR-W30 gas permeation apparatus equipped with a gas chromatography (Yanaco, Japan). The description about the apparatus is shown in detail elsewhere [14]. The effective area of membranes was 28 cm². The measuring temperature range was $35 \sim$ 45° C and the feed pressure was 4 bar. The composition of SF₆ and N₂ was 50 : 50. SF₆ and N₂ concentrations were detected using a thermal conductivity detector. Preliminary experimental results indicated that the permeation coefficients of gases from single and mixture experiments are the same. By measuring the permeate gas concentration, the selec-

Fig. 1. Temperature dependence of gas permeabilities and selectivity of BOPP film.

Table 1. SF₆ Permeability, N₂ Permeability and Permeation Selectivity of Polymeric Membranes at 25°C. Data were Extrapolated from Permeation Experimental Results at 35 ~45°C using a SF₆/N₂ (1/1) Mixture. 1 Barrer = 1 × 10^{-10} cm³(STP)-cm/cm²-s-cmHg

	$P(N_2)$	$P(SF_6) \alpha (N_2/SF_6)$		Activation energy (kI/mol)	
	(Barrer)	(Barrer)	-	N ₂	SF ₆
BOPP	0.19	0.0012	158.3	50.1	90.2
Nitrile rubber	0.68	0.012	56.7	47.5	64.8
Chloroprene	1.44	0.14	10.3	45.5	58.7
LDPE	1.31	0.14	9.4	41.8	58.2
Natural rubber	13.8	4.2	3.3	34.1	40.0

tivity was calculated as a ratio of SF_6 mole fraction to N_2 mole fraction of a permeate gas.

4. Results and Discussion

The performance test was done for SF_6/N_2 separation using 5 polymeric membranes, which presents the greatest challenge for membrane systems due to the green house effect of SF_6 . The temperature dependence of gas permeabilities and selectivity of the biaxially oriented polypropylene (BOPP) membrane is shown in

Fig. 2. The relationship between the N_2 permeability and the N_2/SF_6 selectivity for polymer films. The solid line is an suggested upper bound relation. Numerical values are provided in the Table 1.

Fig. 1. Since gas permeabilities follow the Arrehnius behavior very well, i.e., plot of $\log P$ vs. 1/T is linear, the gas permeabilities at 25°C and activation energies are calculated from the plot and reported in Table 1.

Permeability of N2 in BOPP membrane at 25°C is 0.19 barrer, whereas that of SF_6 is only 0.0012 barrer, resulting in the selectivity of 158. Permeabilities of N₂ and SF₆ in nitrile rubber membrane at 25°C are 0.68 and 0.012 barrers, respectively, while the selectivity is 57. Selectivities of other membranes are about or less than 10. For all membranes, activation energy of less permeable SF₆ is higher than that of more permeable N₂. For both gases, as the permeability increases, the activation energy decreases. These results agree well with previous experimental data using other gas pairs [15]. Permeabilities and selectivities of 5 polymeric membranes are plotted in Fig. 2. The solid line in the figure is suggested trade off curve for the SF₆/N₂ gas pair using an empirical equation: $P_A = k \alpha^n$. The experimentalresults indicate that BOPP and nitrile rubber show interesting permeation behaviors for SF₆/N₂ separation. The slope of the solid line was estimated from the Eq. (1). To estimate the slope n, kinetic diameter values of 4.9 Å and 3.7 Å were used

Table 2. Values of upper Bound Slope n and the FrontFactor k[12].

Gas pair	n	k (Barrer)	
O_2/N_2	-5.666	1,396,000	
N ₂ /CH ₄	-4.507	2,570	
CO_2/N_2	-2.888	30,967,000	
CO ₂ /CH ₄	-2.636	5,369,140	
H_2/CO_2	-2.302	4,515	
$H_2/N2$	-1.484	97,650	
N_2/SF_6	-1.33	160	
H ₂ /CH ₄	-1.107	19,890	

for SF₆ and N₂, respectively [16]. The n value was determined as -1.33. In Table 2, n and k values of several gas pairs are presented [12]. n value for the SF₆/N₂ gas pair is similar to the value for the H₂/CH₄. In the literature, the kinetic diameter for SF₆ was reported as high as 5.4 Å [17]. If we use this value, the n value can be -0.88. The front factor k value of 160 (barrer) was used to draw the upper bound. To get better trade off relationship between permeability of N₂ and selectivity for SF₆/N₂ gas pairs, more permeation experiments are needed.

5. Conclusions

In this study, we investigated the SF₆ and N₂ permeation properties of 5 polymeric membranes. Permeability of N₂ in BOPP membrane at 25°C was 0.19 barrer, whereas that of SF₆ was only 0.0012 barrer, resulting in the selectivity of 158. An upper bound for SF₆/N₂ gas pair was suggested for the first time with n = -1.33 and k = 160 barrer. To get better relationship between permeability of N₂ and selectivity for SF₆/N₂ gas pairs, more permeation experiments are needed.

Acknowledgements

This work was supported by Hanbat National University.

References

- Intergovernmental Panel on Climate Change (IPCC), 1995 Report of the Scientific Assessment Working Group of IPCC (1995).
- L. G. Christophorous, J. K. Olthoff, and D. S. Green, "Gases for electrical insulation and arc interruption: Possible present and future alternatives to pure SF₆", NIST Technical notes, No. 1425 (1997).
- H. Hama, M. Yoshimura, K. Inami, and S. Hamano, "Application problems of SF₆/N₂ mixtures to gas insulated bus," in Gaseous Dielectrics VIII, pp. 353~359, Kluwer Academic/Plenum Publishers, New York, NY (1998).
- L. Niemeyers, "SF₆ recycling in electric power equipments", in Gaseous Dielectrics VIII, pp. 431 ~442, Kluwer Academic/Plenum Publishers, New York, NY (1998).
- H. Lee, M. Lee, H. Lee, and S. Lee, "Permeation and Permselectivity variation of O₂, CF₄, and SF₆ through Polymeric Hollow Fiber Membranes", *Membrane Journal*, **20**, 249 (2010).
- T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A numerical analysis of direct contact membrane distillation for hollow fiber membrane", *Membrane Journal*, 20, 267 (2010).
- H. C. Ko, S. Y. Ha, S. M. Woo, S. Y. Nam, B. S. Lee, C. S. Lee, and H. M. Choi, "Separation and purification of bio gas by hollow fiber gas separation membrane module", *Membrane Journal*, 21, 177 (2011).
- O. Yamamoto, T. Takuma, A. Kawamura, K. Hashimoto, N. Hatano, and M. Kinouchi, "SF₆ gas recovery from SF₆/N₂ mixtures using polymer membrane", in Gaseous Dielectrics IX, pp. 555-560, Kluwer Academic/Plenum Publishers, New York, NY (2001).
- O. Yamamoto, T. Takuma, and M. Kinouchi, "Recovery of SF₆ from N₂/SF₆ gas mixtures by using a polymer membrane", *IEEE Electr. Insul.*

76

Mag., 18, 32 (2002).

- M. Pittroff and F. Vondenhof, "Separation of SF₆/N₂ mixtures", in Gaseous Dielectrics IX, pp. 561-566, Kluwer Academic/Plenum Publishers, New York, NY (2001).
- H. Lee, M. Lee, H. Lee, and S. Lee, "Separation and recovery of SF₆ gas from N₂/SF₆ gas mixtures by using a polymer hollow fiber membranes", *J. KSEE*, 33, 47 (2011).
- L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).
- B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", *Macromolecules*, **32**, 375 (1999).
- 14. Y. Ko and S. U. Hong, "Permeation characteristics of air and water vapor through ABS/filler hybrid

films", Membrane Journal, 18, 256 (2008).

- S. H. Ahn, J. A. Seo, J. H. Kim, Y. Ko, and S. U. Hong, "Synthesis and gas permeation properties of amphiphilic graft copolymer membranes", *J. Membr. Sci.*, 345, 128 (2009).
- 16. Y. E. Li, J. Kapusta, M. Meinari, and J. Barney, "Capture and recycle: A new option for emission reduction of sulfur hexafluoride in magnesium melting", in Rewas '99: Global Symposium on Recycling, Waste Treatment and Clean Technology, Tms (1999).
- T. J. Bandosz, J. Jagie-I-lo, K. Putyera, and J. A. Schwarz, "Sieving properties of carbons by template carbonization of polyfurfuryl alcohol within mineral matrixes", *Langmuir*, **11**, 3964 (1995).