Optimal Frame Length Control for Throughput Enhancement in Cognitive Radio Systems

인지 무선 시스템에서 전송률 향상을 위한 최적의 프레임 길이 제어 방법

  • Received : 2011.11.08
  • Accepted : 2012.02.17
  • Published : 2012.02.25

Abstract

We propose a new frame length control scheme for cognitive radio systems. In the proposed algorithm, the property that the probability of a primary packet arrival continually increases as time elapses during the primary user's idle period is utilized. When reducing the secondary frame length in accordance with the increasing primary packet arrival probability, spectrum sensing is conducted more frequently as time elapses and the primary packet arrival is detected more quickly. We obtain the optimal frame lengths by maximizing the secondary throughput while satisfying the interference constraint. Numerical results show a significant throughput enhancement via the frame length control.

본 논문에서는 인지 무선 시스템에서의 새로운 프레임 길이 제어 방법을 제안한다. 제안된 방법에서는 유휴 기간 동안 시간이 지남에 따라 일차 사용자 패킷이 도착할 확률이 지속적으로 증가하는 특성을 이용한다. 증가하는 일차 사용자 패킷 도착확률에 따라 이차 사용자의 프레임 길이를 줄이면, 스펙트럼 센싱은 시간이 지남에 따라 더 자주 실행되며 일차 사용자의 도착 유무는 더욱 빠르게 검출될 수 있다. 간섭 제한량을 만족시키는 조건 하에 이차 사용자의 전송률을 극대화하는 최적의 프레임 길이를 구한다. 또한, 이러한 프레임 길이 제어 방법을 사용하였을 때의 상당량의 전송률 향상이 있음을 보인다.

Keywords

References

  1. Q. Zhao and B. M. Sadler, "A survey of dynamic spectrum access: Signal processing, networking, and regulation policy," IEEE Signal Process. Mag., vol. 24, no. 3, pp. 79-89, May 2007.
  2. Y.-C. Liang, Y. Zeng, E. Peh, and A. T. Hoang, "Sensing-throughput tradeoff for cognitive radio networks," IEEE Trans. Wireless Commun., vol. 7, no. 4, pp. 1326-1337, Apr. 2008.
  3. Y. Pei, A. T. Hoang, and Y.-C. Liang, "Sensing-throughput tradeoff in cognitive radio networks: How frequently should spectrum sensing be carried out?" in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun., (PIMRC 2007), Sep. 2007, pp. 1-5.
  4. J. N. Daigle and J. D. Langford, "Models for analysis of packet voice communications systems," IEEE J. Sel. Areas Commun., vol. 4, no. 6, pp. 847-855, Sep. 1986. https://doi.org/10.1109/JSAC.1986.1146403
  5. S. Geirhofer, L. Tong, and B. M. Sadler, "Dynamic spectrum access in the time domain: Modeling and exploiting white space," IEEE Commun. Mag., vol. 45, no. 5, pp. 66-72, May 2007.
  6. S. Borst, M. Mandjes, and M. van Uitert, "Generalized processor sharing with light-tailed and heavy-tailed input," IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 821-834, Oct. 2003. https://doi.org/10.1109/TNET.2003.818195
  7. W. Stallings, High-speed Networks and Internets, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2002.
  8. L. Dai and K. B. Letaief, "Throughput maximization of ad-hoc wireless networks using adaptive cooperative diversity and truncated ARQ," IEEE Trans. Commun., vol. 56, no. 11, pp. 1907-1918, Nov. 2008.
  9. T. Shu, M. Krunz, and S. Vrudhula, "Joint optimization of transmit power-time and bit energy efficiency in CDMA wireless sensor networks," IEEE Trans. Wireless Commun., vol. 5, no. 11, pp. 3109-3118, Nov. 2006. https://doi.org/10.1109/TWC.2006.04738
  10. S. Huang, X. Liu, and Z. Ding, "Opportunistic spectrum access in cognitive radio networks," in Proc. IEEE Conf. Comput. Commun., (INFOCOM 2008), Apr. 2008, pp. 2101-2109.
  11. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
  12. Wikipedia, "Lambert W function . wikipedia, the free encyclopedia," 2009. [Online]. Available: http://en.wikipedia.org/wiki/Lambert W
  13. M. Oner and F. Jondral, "On the extraction of the channel allocation information in spectrum pooling systems," IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 558-565, Apr. 2007.