DOI QR코드

DOI QR Code

Single Photon Interference Experiments in a Sagnac-type Mach-Zehnder Interferometer

Sagnac 형태로 변형된 Mach-Zehnder 간섭계를 이용한 단일광자 간섭실험

  • Um, Jayoon (Department of Physics, University of Ulsan) ;
  • Kim, Yong Soo (Department of Physics, University of Ulsan) ;
  • Kim, Heonoh (Basic Science Research Institute, University of Ulsan)
  • Received : 2012.02.13
  • Accepted : 2012.03.27
  • Published : 2012.04.25

Abstract

A Sagnac-type Mach-Zehnder interferometer(SMZI) is a very stable instrument with respect to phase drift because all optical paths can share common optical components. We have observed very stable interference fringes in single photon interference experiments with an extremely attenuated laser beam, and with heralded single photons prepared from polarization correlated photon pairs in type-II spontaneous parametric down-conversion. The phase stability is measured to be about ${\pm}0.18$ rad for the SMZI, in contrast, conventional MZI showed the phase fluctuation of around ${\pm}1.02$ rad.

Sagnac 형태로 변형된 Mach-Zehnder 간섭계(SMZI)는 모든 광경로가 동일한 광부품을 서로 공유하기 때문에 위상 흔들림을 최소화할 수 있는 안정된 간섭계이다. 본 연구에서는 단일광자 수준까지 감쇄시킨 레이저 광과 제 2형의 매개하향변환에서 발생한 편광 상관관계가 있는 광자로부터 준비된 단일광자를 이용한 간섭실험에서 매우 안정된 간섭무늬를 관측하였다. SMZI의 위상은 약 ${\pm}0.18$ rad으로 안정적인 반면에 보통의 MZI는 ${\pm}1.02$ rad의 위상 요동을 나타내었다.

Keywords

References

  1. C. M. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693-1708 (1981). https://doi.org/10.1103/PhysRevD.23.1693
  2. V. Giovannetti, S. Lloyd, and L. Maccone, "Quantumenhanced measurements: beating the standard quantum limit," Science 306, 1330-1336 (2004). https://doi.org/10.1126/science.1104149
  3. P. Hariharan, Basics of Interferometry (Academic Press, New York, USA, 2006).
  4. S. Tolansky, Multiple-beam Interferometry of Surfaces and Films (Clarendon Press, Oxford, England, 1948).
  5. K. Betzler, A. Grone, N. Schmidt, and P. Voigt, "Interferometric measurement of refractive indices," Rev. Sci. lnstrum. 59, 652-653 (1988). https://doi.org/10.1063/1.1139853
  6. M. Ikram and G. Hussain, "Michelson interferometer for precision angle measurement," Appl. Opt. 38, 113-120 (1999). https://doi.org/10.1364/AO.38.000113
  7. J. Minar, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, "Phase-noise measurements in long-fiber interferometers for quantum-repeater applications," Phys. Rev. A 77, 052325 (2008). https://doi.org/10.1103/PhysRevA.77.052325
  8. S.-B. Cho and T.-G. Noh, "Stabilization of a long-armed fiber-optic single-photon interferometer," Opt. Express 17, 19027-19032 (2009). https://doi.org/10.1364/OE.17.019027
  9. G. B. Xavier and J. P. von der Weid, "Stable single-photon interference in a 1 km fiber-optic Mach-Zehnder interferometer with continuous phase adjustment," Opt. Lett. 36, 1764-1766 (2011). https://doi.org/10.1364/OL.36.001764
  10. E. J. Post, "Sagnac effect," Rev. Mod. Phys. 19, 475-493 (1967).
  11. T. Nagata, R. Okamoto, J. L. O'Brien, K. Sasaki, and S. Takeuchi, "Beating the standard quantum limit with four-entangled photons," Science 316, 726-729 (2007).
  12. J.-C. Lee, Y.-C. Jeong, Y.-S. Kim, and Y.-H. Kim, "Experimental demonstration of decoherence suppression via quantum measurement reversal," Opt. Express 19, 16309-16316 (2011). https://doi.org/10.1364/OE.19.016309
  13. S. M. Lee, H. S Park, J. Cho, Y. Kang, J. Y. Lee, H. Kim, D.-H. Lee, and S.-K. Choi, "Experimental realization of a four-photon seven-qubit graph state for one-way quantum computation," Opt. Express 20, 6915-6926 (2012). https://doi.org/10.1364/OE.20.006915