DOI QR코드

DOI QR Code

Interfacial Reaction of Ag Bump/Cu Land Interface for B2it Flash Memory Card Substrate

B2it 플래시 메모리 카드용 기판의 Ag 범프/Cu 랜드 접합 계면반응

  • Hong, Won-Sik (Components & Materials Physics Research Center, Korea Electronics Technology Institute) ;
  • Cha, Sang-Suk (R&D Group, Simmtech Co., Ltd.)
  • 홍원식 (전자부품연구원 부품소재물리연구센터) ;
  • 차상석 ((주)심텍 R&D 그룹)
  • Received : 2012.02.28
  • Accepted : 2012.03.23
  • Published : 2012.03.31

Abstract

After flash memory card(FMC) was manufactured by $B^2it$ process, interfacial reaction of silver bump with thermal stress was studied. To investigate bonding reliability of Ag bump, thermal shock and thermal stress tests were conducted and then examined on the crack between Cu land and Ag bump interface. Diffusion reaction of Ag bump/Cu land interface was analyzed using SEM, EDS and FIB. The Ag-Cu alloy layer due to the interfacial reaction was formed at the Ag/Cu interface. As the diffusivity of Ag ${\rightarrow}$ Cu is faster than Cu ${\rightarrow}$ Ag, a lot of (Cu, Ag) alloy layers were observed at the Cu layer than Ag. These alloy layers contributed to increase the Cu-Ag bonding strength and its reliability.

본 연구는 고밀도 미세회로 형성 및 원가절감에 유리한 페이스트의 인쇄/건조, 프리프레그 관통 및 적층 공법을 이용한 $B^2it$ 공법을 이용하여 FMC 기판을 제조한 후 열적 스트레스에 대한 범프의 계면반응 연구를 수행하였다. 열적 스트레스에 대한 Ag 범프의 접합 신뢰성을 조사하기 위해 열충격시험, 열응력시험을 수행한 후 전기적 특성 및 단면분석을 통해 균열발생 여부를 조사하였다. 또한 Ag 범프와 Cu 랜드의 접합계면에 대한 계면반응 특성을 분석하기 위해 주사전자현미경(SEM), 에너지분산스펙트럼(EDS) 및 FIB분석을 수행하여 계면에서 발생되는 확산반응을 분석하였다. 이러한 결과를 바탕으로 열적 스트레스에 대한 Ag 페이스트 범프/Cu 랜드 접합계면에서 계면반응에 의해 형성된 Ag-Cu 합금층을 확인할 수 있었다. 이러한 합금층은 Cu ${\rightarrow}$ Ag 보다, Ag ${\rightarrow}$ Cu 로의 확산속도가 빠르기 때문에, Cu층에서의 (Ag, Cu) 합금층이 보다 많이 관찰되었으며, 합금층이 Ag범프의 계면 접합력 향상에 기여하는 것을 알 수 있었다.

Keywords

References

  1. J. Askill, "Tracer Diffusion Data for Metals, Alloys and Simple Oxide", New York, Plenum (1970).
  2. S. Divinski and C. Herzig, "Grain Boundary Diffusion and Linear and Non-Linear Segregation of Ag in Cu", Interface Sci., 11(1), 21 (2003). https://doi.org/10.1023/A:1021522620571
  3. T. B. Massalski, "Binary Alloy Phase Diagrams", Vol.1, Am. Soc. Metals, Metal Park, OH, (1986).
  4. F. H. Hayes, H. L. Lukas, G. Effenberg, G. Petzow and Z. Metallkde., "Full Thermodynamic Assessment", 77, 749 (1986), adapted for SGTE compatibility by U.R. Kattner, NIST, http:/ /www.metallurgy.nist.gov/phase/solder/agcu.html (1999).
  5. S. Divinski, M. Lohmann and C. Herzig, "Ag Grain Boundary Diffusion and Segregation in Cu : Measurement in the Type B and C Diffusion Regims", Acta Mater., 49(2), 249 (2001). https://doi.org/10.1016/S1359-6454(00)00304-9
  6. T. Ito, "Molecular Dynamics Study on Melting Phenomena in Cu-Ag Eutectic System", J. Power Energy Systems, 3(1), 291 (2009).
  7. J. M. Zhang, G. X. Chena and K. W. Xub, "Atomistic study of self-diffusion in Cu-Ag immiscible alloy system", J. Alloys and Compounds, 425, 169 (2006). https://doi.org/10.1016/j.jallcom.2006.01.042
  8. S. Strehle, S. Menzel, H. Wendrock, J. Acker and K. Wetzig, "M icrostructural investigation of electrodeposited CuAg-thin films", Microelectron. Eng., 70, 506 (2003). https://doi.org/10.1016/S0167-9317(03)00422-2
  9. D. H. Kim, S. H. Yoo, C. W. Lee and T. Y. Lee, "Temperature Measurement and Contact Resistance of Au Stud Bump Bonding and Ag Paste Bonding with Thermal Heater Device", J. Microelectron. Packag. Soc., 17(2), 55 (2010) .
  10. C. H. Song, Y. H. Kim, S. M. Lee, J. S. Mok and Y. S. Yang, "Investigation of Ag Migration from Ag Paste Bump in Printed Circuit Board", J. Microelectron. Packag. Soc., 20(1), 19 (2010) .
  11. S. H. Cho and T. E. Chang, "Thermo-mechanical Behavior Characteristic Analysis of (Buried Bump Interconnection Technology) in PCB(Printed Circuit Board)", J. Microelectron. Packag. Soc., 16(2), 43 (2009).

Cited by

  1. Silver Sintered Joint Property Between Silicon Carbide Device and Ceramic Substrate for Electric Vehicle Power Module pp.1543-186X, 2018, https://doi.org/10.1007/s11664-018-6769-5
  2. Low-Pressure Silver Sintering of Automobile Power Modules with a Silicon-Carbide Device and an Active-Metal-Brazed Substrate vol.49, pp.1, 2020, https://doi.org/10.1007/s11664-019-07654-0