DOI QR코드

DOI QR Code

Effects of Ni layer as a diffusion barrier on the aluminum-induced crystallization of the amorphous silicon on the aluminum substrate

알루미늄 기판 상의 Ni layer가 a-Si의 AIC(Aluminum Induced Crystallization)에 미치는 영향

  • Yun, Won-Tae (Department of Advanced Materials Science and Engineering, University of Incheon) ;
  • Kim, Young-Kwan (Department of Advanced Materials Science and Engineering, University of Incheon)
  • 윤원태 (인천대학교 신소재공학과) ;
  • 김영관 (인천대학교 신소재공학과)
  • Received : 2011.12.21
  • Accepted : 2012.02.03
  • Published : 2012.04.30

Abstract

Aluminum induced crystallization of amorphous silicon was attempted by the aluminum substrate. To avoid the layer exchange between silicon and aluminum layer, Ni layer was deposited between these two layers by sputtering. To obtain the bigger grain of the crystalline silicon, wet blasted silica layer was employed as windows between the nickel and a-Si layer. Ni obtained after the annealing treatment at $520^{\circ}C$ was found to be a promising material for the diffusion barrier between silicon and aluminum. One way to obtain bigger grain of crystalline silicon layer applicable to solar cell of higher performance was envisioned in this investigation.

본 연구에서는 비정질 실리콘의 알루미늄 유도 결정화(AIC)가 시도되었다. 결정질 실리콘의 좀 더 큰 입자를 얻기 위해, 선택적인 핵생성(Selective nucleation) 시도는 비정질 실리콘 밑의 실리카($SiO_2$) 층의 습식 파우더 분사 처리와 함께 진행됐다. 또한 니켈 층은 실리콘 원자가 알루미늄 층으로 이동하는 것을 방지하기 위한 확산 방지막(Diffusion barrier)으로 선택되었다. $520^{\circ}C$에서 열처리를 한 후에 XRD 분석을 통해 Si(111) 방향으로 결정화된 결정질 실리콘을 확인했고 니켈은 실리콘과 알루미늄 사이의 확산 방지막으로 매우 효과적인 재료라는 것을 입증하였다. 이 연구는 고성능의 태양전지에 적용하는 결정질 실리콘 막의 좀 더 큰 입자를 얻기 위한 방법 중의 하나라고 기대된다.

Keywords

References

  1. A. Eyer, F. Hass and T. Kieliba, "A zone melting recrystallisation (zmr) processor for 400 mm wide samples", 19th European Photovoltaic Solar Energy Conference (2004) p.7-11.
  2. Per I. Widenborg and Armin G. Aberle, "Hydrogeninduced dopant neutralisation in p-type AIC poly-Si seed layers functioning as buried emitters in ALICE thin-film solar cells on glass", J. Crystal Growth 306 (2007) 177. https://doi.org/10.1016/j.jcrysgro.2007.03.053
  3. W. Knaepen, C. Detavernier, R.L. Van Meirhaeghe, J. Jordan Sweet and C. Lavoie, "In-situ X-ray diffraction study of metal induced crystallization of amorphous silicon", Thin Solid Films 516 (2008) 4946. https://doi.org/10.1016/j.tsf.2007.09.037
  4. O. Tuzun, Y. Qiu, A. Slaoui, I. Gordon, et al., "Properties of n-type polycrystalline silicon solar cells formed by aluminium induced crystallization and CVD thickening", Sol. En. Mat. Sol. Cel. (2010) 1869.
  5. D. Van Gestel, I. Gordon and J. Poortmans, "Metal induced crystallization of amorphous silicon for photovoltaic solar cells", Physics Procedia 11 (2011) 196. https://doi.org/10.1016/j.phpro.2011.01.003
  6. Hongkun Cai, Dexian Zhang, et al., "Study on diffusion barrier layer of silicon-based thin-film solar cells on polyimide substrate", Sol. En. Mat. Sol. Cel. 93 (2009) 1959. https://doi.org/10.1016/j.solmat.2009.07.011
  7. Muller, P. Siffert, "Silicon, evolution and future of a technology", Springer B.H., New York (2004) p.73-92.
  8. Bo, N. Yao, S.R. Shieh, et al., "Large-grain polycrystalline silicon films with low intragranular defect density by low-temperature solid-phase crystallization without underlying oxide", J. Appl. Phys. 91 (2002) 2910. https://doi.org/10.1063/1.1448395
  9. P. Prathap, O. Tuzun, et al., "Thin film silicon solar cells by AIC on foreign substrates", Sol. En. Mat. Sol. Cel. 95 (2011) 544.
  10. H.-D. Yang, Y.-H. Kil, Kyu et al., "Early stage of heteroepitaxial Ge growth on Si(100) substrate with surface treatments using inductively coupled plasma (ICP)", J. Korean Crystal Growth and Crystal Technology 21 (2011) 153. https://doi.org/10.6111/JKCGCT.2011.21.4.153
  11. H. Jeong, J.-H. Lee and S. Boo, "Investigation of aluminum- induced crystallization of amorphous silicon and crystal properties of the silicon film for polycrystalline silicon solar cell fabrication", J. Korean Crystal Growth and Crystal Technology 20 (2010) 254. https://doi.org/10.6111/JKCGCT.2010.20.6.254
  12. Ozgenc Ebil, Roger Aparicio and Robert Birkmire, "Aluminum-induced crystallization of amorphous silicon films deposited by hot wire chemical vapor deposition on glass substrates", Thin Solid Films 519 (2010) 178. https://doi.org/10.1016/j.tsf.2010.07.097
  13. I. Gordon, L. Carnel, D. Van Gestel, et al., "Fabrication and characterization of highly efficient thin-film polycrystalline- silicon solar cells based on aluminum-induced crystallization", Thin Solid Films 516 (2008) 6984. https://doi.org/10.1016/j.tsf.2007.12.114