DOI QR코드

DOI QR Code

Structural change and electrical conductivity according to Sr content in Cu-doped LSM (La1-xSrxMn0.8Cu0.2O3)

Sr 함량이 Cu-doped LSM(La1-xSrxMn0.8Cu0.2O3)의 구조적변화와 전기전도도에 미치는 영향

  • Ryu, Ji-Seung (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Noh, Tai-Min (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Jin-Seong (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Hee-Soo (School of Materials Science and Engineering, Pusan National University)
  • 류지승 (부산대학교 하이브리드소재 솔루션 국가핵심연구센터) ;
  • 노태민 (부산대학교 재료공학부) ;
  • 김진성 (부산대학교 재료공학부) ;
  • 이희수 (부산대학교 재료공학부)
  • Received : 2012.01.11
  • Accepted : 2012.03.09
  • Published : 2012.04.30

Abstract

The structural change and the electrical conductivity with Sr content in $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$ (LSMCu) were studied. $La_{0.8}Sr_{0.2}MnO_3$ (LSM) and $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$ ($0.1{\leq}x{\leq}0.4$) were synthesized by EDTA citric complexing process (ECCP). A decrease in the lattice parameters and lattice volumes was observed with increase of Sr content, and these results were attributed to the increasing $Mn^{4+}$ ions and $Cu^{3+}$ ions in B-site. The electrical conductivity measured from $500^{\circ}C$ to $1000^{\circ}C$ was increased with increase of Sr content in the $0.1{\leq}x{\leq}0.3$ composition range, and it was 172.6 S/cm (at $750^{\circ}C$) and 177.7 S/cm (at $950^{\circ}C$, the maximum value) in x = 0.3. The electrical conductivity was decreased in x = 0.4 because of the presence of the second phase in the grain boundaries. The lattice volume was contracted by increase of $Mn^{4+}$ ions and $Cu^{3+}$ ions in B-site according to increase of Sr content and the electrical conductivity was increased with increase of charge carriers which were involved in the hopping mechanism.

$La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3-{\delta}}$(LSMCu)에서 Sr 함량에 따른 구조적 변화와 전기전도도에 대해 연구, 고찰하였다. EDTA citric complexing process(ECCP)로 페로브스카이트 구조를 갖는 $La_{0.8}Sr_{0.2}MnO_3$(LSM)와 $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$($0.1{\leq}x{\leq}0.4$)을 제조하였다. Sr 함량이 증가할수록 격자상수와 격자부피는 감소하는 경향을 나타내었으며, 이는 Sr 함량이 증가함에 따라 B-site에서 증가하는 $Mn^{4+}$ 이온과 $Cu^{3+}$ 이온의 영향인 것으로 판단하였다. $0.1{\leq}x{\leq}0.3$ 범위의 조성에서 Sr 함량이 증가할수록 $500{\sim}1000^{\circ}C$에서 측정된 전기전도도는 증가하였고, x = 0.3 조성에서는 $750^{\circ}C$$950^{\circ}C$에서 각각 172.6 S/cm와 177.7 S/cm (최고값)를 나타내었다. 반면, x = 0.4 조성에서는 전기전도도가 감소하였는데 이는 입계에 발생한 산화물에 의한 영향으로 판단하였다. Sr 함량이 증가함에 따라 B-site에 존재하는 $Mn^{4+}$ 이온과 $Cu^{3+}$ 이온의 증가로 인해 격자수축이 발생하고, hopping mechanism에 관여하는 charge carrier들이 늘어나 전기전도도가 증가한 것으로 판단하였다.

Keywords

References

  1. S.J. Skinner, "Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes", Int. J. Inorg. Mater. 3 (2001) 113. https://doi.org/10.1016/S1466-6049(01)00004-6
  2. C. Sun, R. Hui and J. Roller, "Cathode materials for solid oxide fuel cells: a review", J. Solid State Electr. 14 (2010) 1125. https://doi.org/10.1007/s10008-009-0932-0
  3. I.Y. Park, J.M. Im, Y.G. Jung and D.W. Shin, "Fabrication of $Sm_{0.5}Sr_{0.5}CoO_{3}$ cathode films for intermediate temperature SOFCs by electrostatic spray deposition", Journal of the Korean Crystal Growth and Crystal Technology 20 (2010) 69. https://doi.org/10.6111/JKCGCT.2010.20.2.069
  4. EV. Tsipis and VV. Kharton, "Electrode materials and reaction mechanisms in soild oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects", J. Solid State Electr. 15 (2011) 1007. https://doi.org/10.1007/s10008-011-1341-8
  5. S.J. Skinner and C. Munnings, "Electrical properties of iron-substituted $La_{6.4}Sr_{1.6}Cu_{8}O_{20{\pm}\delta}$", Mater Lett. 57 (2002) 594. https://doi.org/10.1016/S0167-577X(02)00836-4
  6. H.C. Yu, F. Zhao, A.V. Virkar and K.Z. Fung, "Electrochemical characterization and performance evaluation of intermediate temperature solid oxide fuel cell with $La_{0.75}Sr_{0.25}CuO_{2.5{\pm}\delta}$", J. Power Sources 152 (2005) 22. https://doi.org/10.1016/j.jpowsour.2005.03.173
  7. A. Bernov, H. Wood and A. Atkinson, "Evaluation of $La_{0.8}Sr_{0.2}Cu_{1-x}Mn_{x}O_{y}$ double perovskite for use in SOFCs", J. Electrochem Soc. 154 (2007) B1362. https://doi.org/10.1149/1.2792193
  8. T.M. Noh, J.S. Ryu, J.S. Kim, C.W. Jeong and H.S. Lee, "Structural analysis and thermal expansion property of Cu doped LSM for SOFCs", Journal of the Korean Crystal Growth and Crystal Technology 4 (2011) 175.
  9. S.B. Adler, "Mechanism and kinetics of oxygen reduction on porous $La_{1-x}Sr_{x}CoO_{3-\delta}$", Solid State Ionics. 111 (1998) 125. https://doi.org/10.1016/S0167-2738(98)00179-9
  10. A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov and P. Kofstad, "Crystal structure, electrical and magnetic properties of $La_{1-x}Sr_{x}CoO_{3-y}$", Solid State Ionics. 80 (1995) 189. https://doi.org/10.1016/0167-2738(95)00114-L
  11. S.H. Yang, K.H. Kim, H.H. Yoon, W.J. Kim and H.W. Choi, "Comparison of combustion and solid-state reaction methods for the fabrication of SOFC LSM cathodes", Mol. Cryst. Liq. Cryst. 539 (2011) 50.
  12. M. El-Hagary, Y.A. Shoker, S. Mohammad, A.M. Moustafa, A. Abd El-Aal, H. Michor, M. Reissner, G. Hilscher and A.A. Ramadan, "Structural and magnetic properties of polycrystalline $La_{0.77}Sr_{0.23}Mn_{1-x}Cu_{x}O_{3}$ $(O{\leq}x{\leq}0.5)$ manganites", J. Alloy Compd. 468 (2009) 47. https://doi.org/10.1016/j.jallcom.2008.01.048
  13. M. El-Hagary, Y.A. Shoker, M. Emam-Ismail, A.M. Moustafa, A. Abd El-Aal and A.A. Ramadan, "Magnetocaloric effect in manganite perovskites $La_{0.77}Sr_{0.23}Mn_{1-x}Cu_{x}O_{3}$ $(O.1{\leq}x{\leq}0.3)$", Solid State Commun. 149 (2009) 184. https://doi.org/10.1016/j.ssc.2008.11.023
  14. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas and G.J. Exarhos, "Glycine-nitrate combustion synthesis of oxide ceramic powders", Mater Lett. 10 (1990).
  15. M. Gauden, C.L. Robert and F. Ansart, "Preparation and characterization of $La_{1-x}Sr_{x}MnO_{3+\delta}$ $(O{\leq}x{\leq}0.6)$", Solid State Sci. 4 (2002) 125. https://doi.org/10.1016/S1293-2558(01)01208-0
  16. X. Shen, G. Xu and C. Shao, "The effect of B site doping on infrared emissivity of lanthanum manganites $La_{0.8}Sr_{0.2}Mn_{1-x}B_{x}O_{3}$ (B = Ti or Cu)", J. Alloy Compd. 499 (2010) 212. https://doi.org/10.1016/j.jallcom.2010.03.169
  17. J.A.M.V. Roosmalen, J.P.P. Huijsmans and L. Plomp "Electrical conductivity of $La_{1-x}Sr_{x}MnO_{3+\delta}$", Solid State Ionics. 66 (1993) 279. https://doi.org/10.1016/0167-2738(93)90417-2
  18. H.C. Yu and K.Z. Fung, "$La_{1-x}Sr_{x}CuO_{2.5-\delta}$ as new cathode materials for intermediate temperature solid oxide fuel cells", Mater Res Bull. 38 (2003) 231. https://doi.org/10.1016/S0025-5408(02)01034-6
  19. J.H. Kuo and H.U. Anderson, "Oxidation-reduction behavior of undoped and Sr-doped $LaMnO_{3}$: defect structure, electrical cinductivity, and thermoelectric power", J. Solid State Chem. 87 (1990) 55. https://doi.org/10.1016/0022-4596(90)90064-5
  20. S. Kuharuangrong, "Effects of Ni on the electrical conductivity and microstructure of $La_{0.82}Sr_{0.16}MnO_{3}$", Ceram Int. 30 (2004) 273. https://doi.org/10.1016/S0272-8842(03)00099-3