DOI QR코드

DOI QR Code

Characteristics of ZnO Nanorod/ZnO/Si(100) Grown by Hydrothermal Method

수열법으로 성장한 ZnO Nanorod/ZnO/Si(100)의 특성

  • Jeong, Min-Ho (Daeyangmetal, Yesankun Chungnam) ;
  • Jin, Yong-Sik (Dep. of Information & Electronics Materias Engineering Chonbuk University) ;
  • Choi, Sung-Min (Dep. of Information & Electronics Materias Engineering Chonbuk University) ;
  • Han, Duk-Dong (Dep. of Information & Electronics Materias Engineering Chonbuk University) ;
  • Choi, Dae-Kue (Faculty of Advanced Materials Chonbuk University)
  • 정민호 (대양금속) ;
  • 진용식 (전북대학교 대학원 정보전자재료공학과) ;
  • 최성민 (전북대학교 대학원 정보전자재료공학과) ;
  • 한덕동 (전북대학교 대학원 정보전자재료공학과) ;
  • 최대규 (전북대학교 공과대학 신소재공학부)
  • Received : 2011.06.07
  • Accepted : 2012.03.28
  • Published : 2012.04.27

Abstract

Nanostructures of ZnO, such as nanowires, nanorods, nanorings, and nanobelts have been actively studied and applied in electronic or optical devices owing to the increased surface to volume ratio and quantum confinement that they provide. ZnO seed layer (about 40 nm thick) was deposited on Si(100) substrate by RF magnetron sputtering with power of 60 W for 5 min. ZnO nanorods were grown on ZnO seed layer/Si(100) substrate at $95^{\circ}C$ for 5 hr by hydrothermal method with concentrations of $Zn(NO_3)_2{\cdot}6H_2O$ [ZNH] and $(CH_2)_6N_4$ [HMT] precursors ranging from 0.02M to 0.1M. We observed the microstructure, crystal structure, and photoluminescence of the nanorods. The ZnO nanorods grew with hexahedron shape to the c-axis at (002), and increased their diameter and length with the increase of precursor concentration. In 0.06 M and 0.08 M precursors, the mean aspect ratio values of ZnO nanorods were 6.8 and 6.5; also, ZnO nanorods had good crystal quality. Near band edge emission (NBE) and a deep level emission (DLE) were observed in all ZnO nanorod samples. The highest peak of NBE and the lower DLE appeared in 0.06 M precursor; however, the highest peak of DLE and the lower peak of NBE appeared in the 0.02 M precursor. It is possible to explain these phenomena as results of the better crystal quality and homogeneous shape of the nanorods in the precursor solution of 0.06 M, and as resulting from the bed crystal quality and the formation of Zn vacancies in the nanorods due to the lack of $Zn^{++}$ in the 0.02 M precursor.

Keywords

References

  1. R. E. Marotti, P. Georgi, G. Machado and E.A. Dalchiele, Sol. Energ. Mater. Sol. Cell., 90, 2356 (2006). https://doi.org/10.1016/j.solmat.2006.03.008
  2. H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu and R. P. H. Chang, Phys. Rev. Lett., 84, 5584 (2000). https://doi.org/10.1103/PhysRevLett.84.5584
  3. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang and S. J. Chua, J. Appl. Phys., 98, 013505 (2005). https://doi.org/10.1063/1.1940137
  4. H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi and H. Uchiki, Appl. Phys. Lett., 76, 1905 (2000). https://doi.org/10.1063/1.126207
  5. M. Kumar, T. -H. Kim, S. -S. Kim and B. -T. Lee, Appl. Phys. Lett., 89, 112103 (2006). https://doi.org/10.1063/1.2338527
  6. S. Baruah, C. Thanachayanont and J. Dutta, Sci. Tech. Adv. Mater., 9, 025009 (2008). https://doi.org/10.1088/1468-6996/9/2/025009
  7. W. L. Hughes and Z. L. Wang, Appl. Phys. Lett., 86, 043106 (2005). https://doi.org/10.1063/1.1853514
  8. T. Sun, J. Qiu and C. Liang, J. Phys. Chem. C, 112, 715 (2008). https://doi.org/10.1021/jp710071f
  9. Y. Zhang, G. Du, B. Liu, H. Zhu, T. Yang, W. Li, D. Liu and S. Yang, J. Cryst. Growth, 262, 456 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.079
  10. S. Kim, J. -M. Myoung, Kor. J. Mater. Res. 19(1), 24 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.1.024
  11. N. L. Hung, H. Kim and D. Kim, Kor. J. Mater. Res., 20(5), 235 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.5.235
  12. C. -S. Son, Kor. J. Mater. Res., 21(4), 202 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.4.202
  13. C. X. Xu, X. W. Sun and B. J. Chen, Appl. Phys. Lett., 84, 1540 (2004). https://doi.org/10.1063/1.1651328
  14. H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao and D. C. Look, Appl. Phys. Lett., 77, 3761 (2000). https://doi.org/10.1063/1.1331089
  15. K. C. Lai, C. C. Liu, C. H. Lu, C. H. Yeh and M. P. Houng, Sol. Energ. Mater. Sol. Cell., 94, 397 (2010). https://doi.org/10.1016/j.solmat.2009.12.002
  16. V. Bhosle, J. T. Prater, F. Yang, D. Burk, S. R. Forrest and J. Narayan, J. Appl. Phys., 102, 023501 (2007). https://doi.org/10.1063/1.2750410
  17. K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisi , C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding and W. K. Ge, J. Phys. Chem. B, 110, 20865 (2006). https://doi.org/10.1021/jp063239w
  18. E. J. H. Lee, C. Ribeiro, E. Longo and E. R. Leite, J. Phys. Chem. B, 109(44), 20842 (2005). https://doi.org/10.1021/jp0532115
  19. C. Pacholski, A. Kornowski and H. Weller, Angew. Chem. Int. Ed., 41(7), 1188 (2002). https://doi.org/10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5
  20. A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause and H. O. Everitt, Phys. Rev. B, 70, 195207 (2004). https://doi.org/10.1103/PhysRevB.70.195207
  21. Z. Wang, L. Hu, Vacuum, 83, 906 (2009). https://doi.org/10.1016/j.vacuum.2008.08.008
  22. A. B. Djurisic, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, Nanotechnology 18, 095702 (2007). https://doi.org/10.1088/0957-4484/18/9/095702
  23. X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, Appl. Phys. Lett., 78(16), 2285(2001). https://doi.org/10.1063/1.1361288