DOI QR코드

DOI QR Code

Effect of the Crystalline Phase of Al2O3 Nanoparticle on the Luminescence Properties of YAGG:Ce3+ Phosphor under Vacuum UV Excitation

진공자외선 여기에 의한 YAGG:Ce3+ 형광체의 광발광 특성에 미치는 Al2O3 나노입자 원료의 결정상의 영향

  • Wu, Mi-Hye (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Sung-Ho (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Jung, Ha-Kyun (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 우미혜 (한국화학연구원 에너지소재연구센터) ;
  • 최성호 (한국화학연구원 에너지소재연구센터) ;
  • 정하균 (한국화학연구원 에너지소재연구센터)
  • Received : 2012.03.02
  • Accepted : 2012.04.02
  • Published : 2012.04.27

Abstract

$Ce^{3+}$-doped yttrium aluminum gallium garnet (YAGG:$Ce^{3+}$), which is a green-emitting phosphor, was synthesized by solid state reaction using ${\alpha}$-phase or ${\gamma}$-phase of nano-sized $Al_2O_3$ as the Al source. The processing conditions and the chemical composition of phosphor for the maximum emission intensity were optimized on the basis of emission intensity under vacuum UV excitation. The optimum heating temperature for phosphor preparation was $1550^{\circ}C$. Photoluminescence properties of the synthesized phosphor were investigated in detail. From the excitation and emission spectra, it was confirmed that the YAGG:$Ce^{3+}$ phosphors effectively absorb the vacuum UV of 120-200 nm and emit green light positioned around 530 nm. The crystalline phase of the alumina nanoparticles affected the particle size and the luminescence property of the synthesized phosphors. Nano-sized ${\gamma}-Al_2O_3$ was more effective for the achievement of higher emission intensity than was nano-sized ${\alpha}-Al_2O_3$. This discrepancy is considered to be because the diffusion of $Al^{3+}$ into $Y_2O_3$ lattice is dependent on the crystalline phase of $Al_2O_3$, which affects the phase transformation of YAGG:$Ce^{3+}$ phosphors. The optimum chemical composition, having the maximum emission intensity, was $(Y_{2.98}Ce_{0.02})(Al_{2.8}Ga_{1.8})O_{11.4}$ prepared with ${\gamma}-Al_2O_3$. On the other hand, the decay time of the YAGG:$Ce^{3+}$ phosphors, irrespective of the crystalline phase of the nano-sized alumina source, was below 1 ms due to the allowed $5d{\rightarrow}4f$ transition of the $Ce^{3+}$ activator.

Keywords

References

  1. S. Sharma, A. K. Srivastava, H. Singh, M. Raja and H. K. Dwivedi, Displays, 31, 122 (2010). https://doi.org/10.1016/j.displa.2010.03.001
  2. J. -H. Seo, S.Choi, S. Nahm, H. -K. Jung, Kor. J. Mater. Res., 22(2), 103 (2011) (in Korean).
  3. C. -C. Wu, B. -M. Cheng and T. -M. Chen, J. Rare Earth., 24, 179 (2006). https://doi.org/10.1016/S1002-0721(07)60354-8
  4. B. Y. Han, J. S. Yoo, Y. G. Yoo and E. G. Heo, J. Electrochem. Soc., 156, J382 (2009). https://doi.org/10.1149/1.3243856
  5. S. H. Lee, D. S. Jung, J. M. Han, H. Y. Koo and Y. C. Kang, J. Alloy. Comp., 477, 776 (2009). https://doi.org/10.1016/j.jallcom.2008.10.154
  6. D. Haranath, H. Chander, P. Sharma and S. Singh, Appl. Phys. Lett., 89, 173118 (2006). https://doi.org/10.1063/1.2367657
  7. Y. Pan, M. Wu and Q. Su, J. Phys. Chem. Solid., 65, 845 (2004). https://doi.org/10.1016/j.jpcs.2003.08.018
  8. M. Medraj, R. Hammond, M. A. Parvez, R. A. L. Drew and W. T. Thompson, J. Eur. Ceram. Soc., 26, 3515 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.12.008
  9. H. Yang, L. Yuan, G. Zhu, A. Yu and H. Xu, Mater. Lett., 63, 2271 (2009). https://doi.org/10.1016/j.matlet.2009.07.012
  10. K. Ohno and T. Abe, J. Electrochem. Soc., 141, 1252 (1994). https://doi.org/10.1149/1.2054905
  11. H. Yang, D. -K. Lee and Y. -S. Kim, Mater. Chem. Phys., 114, 665 (2009). https://doi.org/10.1016/j.matchemphys.2008.10.019
  12. Y. D. Huh, Y. S. Cho and Y. R. Do, Bull. Korean Chem. Soc., 23(10), 1435 (2002). https://doi.org/10.5012/bkcs.2002.23.10.1435
  13. C. W. Won, H. H. Nersisyan, H. I. Won, J. H. Lee and K. H. Lee, J. Alloy. Comp., 509, 2621 (2011). https://doi.org/10.1016/j.jallcom.2010.11.143
  14. M. -S. Tasi, W. -C. Fu, W. -C. Wu, C. -H. Chen and C. -H. Yang, J. Alloy. Comp., 455(1-2), 461 (2008). https://doi.org/10.1016/j.jallcom.2007.01.148
  15. G. Li, Q. Cao, Z. Li, Y. Huang, Y. Wei and J. Shi, J. Alloy. Comp., 485, 561 (2009). https://doi.org/10.1016/j.jallcom.2009.06.026
  16. V. Babin, M. Kink, Y. Maksimov, K. Nejezchleb, M. Nikl and S. Zazubovich, J. Lumin., 122-123, 332 (2007). https://doi.org/10.1016/j.jlumin.2006.01.166