DOI QR코드

DOI QR Code

Silicide Formation of Atomic Layer Deposition Co Using Ti and Ru Capping Layer

  • Yoon, Jae-Hong (School of Electrical and Electronics Engineering, Yonsei University) ;
  • Lee, Han-Bo-Ram (School of Electrical and Electronics Engineering, Yonsei University) ;
  • Gu, Gil-Ho (Department of Materials Science and Engineering, POSTECH) ;
  • Park, Chan-Gyung (Department of Materials Science and Engineering, POSTECH) ;
  • Kim, Hyung-Jun (School of Electrical and Electronics Engineering, Yonsei University)
  • Received : 2012.02.26
  • Accepted : 2012.04.02
  • Published : 2012.04.27

Abstract

$CoSi_2$ was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt ($Co(iPr-AMD)_2$) as a precursor and $NH_3$ as a reactant; this reaction produced a highly conformal Co film with low resistivity ($50\;{\mu}{\Omega}cm$). To prevent oxygen contamination, $ex-situ$ sputtered Ti and $in-situ$ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and $O_2$ as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect ratio. X-ray diffraction showed that $CoSi_2$ was in a poly-crystalline state and formed at over $800^{\circ}C$ of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, $CoSi_2$ about 40 nm thick was formed while the $SiO_x$ interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of $CoSi_2$.

Keywords

References

  1. H. Iwai, T. Ohguro and S. Ohmi, Microelectron. Eng., 60, 157 (2002). https://doi.org/10.1016/S0167-9317(01)00684-0
  2. H. Y. Lin, S. L. Wu, S. J. Chang, Y. P. Wang, Y. M. Lin and C. W. Kuo, Semicond. Sci. Technol., 24, 015015 (2009) https://doi.org/10.1088/0268-1242/24/1/015015
  3. H. S. Rhee, B. T. Ahn and D. K. Sohn, J. Appl. Phys., 86, 3452 (1999). https://doi.org/10.1063/1.371228
  4. H. -B. -R. Lee and H. Kim, Electrochem. Solid State Lett., 9, G323 (2006). https://doi.org/10.1149/1.2338777
  5. J. Yoon, H. -B. -R. Lee, D. Kim, T. Cheon, S. -H. Kim and H. Kim, J. Electrochem. Soc., 158, H1179 (2011). https://doi.org/10.1149/2.077111jes
  6. H. -B. -R. Lee, J. Y. Son and H. Kim, Appl. Phys. Lett., 90, 213509 (2007). https://doi.org/10.1063/1.2742791
  7. H. Kim, Thin Solid Films, 519, 6639 (2011). https://doi.org/10.1016/j.tsf.2011.01.404
  8. H. -B. -R. Lee, W. -H. Kim, J. W. Lee, J. -M. Kim, K. Heo, I. C. Hwang, Y. Park, S. Hong and H. Kim, J. Electrochem. Soc., 157, D10 (2010). https://doi.org/10.1149/1.3248002
  9. C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, R. A. Donaton and K. Maex, Microelectron. Eng., 50, 125 (2000). https://doi.org/10.1016/S0167-9317(99)00272-5
  10. W. -H. Kim, S.- J. Park, J. -Y. Son and H. Kim, Nanotechnology, 19, 045302 (2008). https://doi.org/10.1088/0957-4484/19/04/045302
  11. S. -J. Park, W. -H. Kim, H. -B. -R. Lee, W. J. Maeng and H. Kim, Microelectron. Eng., 85, 39 (2008). https://doi.org/10.1016/j.mee.2007.01.239
  12. W. -H. Kim, S. -J. Park, D. Y. Kim and H. Kim, J. Kor. Phys. Soc., 55, 32 (2009). https://doi.org/10.3938/jkps.55.32
  13. R. K. K. Chong, M. Yeadon, W. K. Choi, E. A. Stach and C. B. Boothroyd, Appl. Phys. Lett., 82, 1833 (2003). https://doi.org/10.1063/1.1555708
  14. M. L. A. Dass, D. B. Fraser and C. -S. Wei, Appl. Phys. Lett., 58, 1308 (1991). https://doi.org/10.1063/1.104345
  15. R. T. Tung, Appl. Phys. Lett., 68, 3461 (1996). https://doi.org/10.1063/1.115793
  16. T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, Y. Arimoto and T. Ito, J. Electrochem. Soc., 140, 3624 (1993). https://doi.org/10.1149/1.2221138
  17. D. Mathiot, A. Straboni, E. Andre and P. Debenest, J. Appl. Phys., 73, 8215 (1993). https://doi.org/10.1063/1.353438
  18. C. S. Petersson, J. E. E. Baglin, J. J. Dempsey, F. M. d'Heurle and S. J. La Placa, J. Appl. Phys., 53, 4866 (1982). https://doi.org/10.1063/1.331319