DOI QR코드

DOI QR Code

Synthesis and Characterization of Sm2O3 Doped CeO2 Nanopowder by Reverse Micelle Processing

역마이셀을 이용한 Sm2O3 도핑 CeO2 나노분말의 합성 및 특성

  • Kim, Jun-Seop (School of nano & advanced material Eng., Changwon National University) ;
  • Bae, Dong-Sik (School of nano & advanced material Eng., Changwon National University)
  • 김준섭 (창원대학교 나노신소재공학부) ;
  • 배동식 (창원대학교 나노신소재공학부)
  • Received : 2012.02.06
  • Accepted : 2012.04.12
  • Published : 2012.04.27

Abstract

The preparation of $Sm_2O_3$ doped $CeO_2$ in Igepal CO-520/cyclohexane reverse micelle solutions has been studied. In the present work, we synthesized nanosized $Sm_2O_3$ doped $CeO_2$ powders by reverse micelle process using aqueous ammonia as the precipitant; hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase, and poly (xoyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by Thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), and Transmission electron microscopy (TEM). The crystallite size was found to increase with increase in water to surfactant (R) molar ratio. Average particle size and distribution of the synthesized $Sm_2O_3$ doped $CeO_2$ were below 10 nm and narrow, respectively. TG-DTA analysis shows that phase of $Sm_2O_3$ doped $CeO_2$ nanoparticles changed from monoclinic to tetragonal at approximately $560^{\circ}C$. The phase of the synthesized $Sm_2O_3$ doped $CeO_2$ with heating to $600^{\circ}C$ for 30 min was tetragonal $CeO_2$. This study revealed that the particle formation process in reverse micelles is based on a two step model. The rapid first step is the complete reduction of the metal to the zero valence state. The second step is growth, via reagent exchanges between micelles through the inter-micellar exchange.

Keywords

References

  1. O. Yamamoto, Y. Arati, Y. Takeda and N. Imanishi, Solid State Ionic Materials, p. 51, World Scientific Publishing Co., London, UK (1994).
  2. O. Yamamoto, Y. Arati, Y. Takeda and N. Imanishi, Solid State Ionic Materials, p. 733, World Scientific Publishing Co., London, UK (1994).
  3. Y. Maki, M. Matsuda and T. Kudo, US Patent, No. 3607424, USA (1971).
  4. I. Riess, J. Electrochem. Soc., 128, 2077 (1981). https://doi.org/10.1149/1.2127193
  5. H. Yahiro, Y. Eguchi, K. Eguchi and H. Arai, J. Appl. Electrochem., 18, 527 (1988). https://doi.org/10.1007/BF01022246
  6. B. C. H. Steele, Recent Trends and Applications, p. 402, ed. T. Takahashi, World Scientific, London, UK (1989).
  7. K. Higashi, K. Sonoda, H. Ono, S. Sameshima and Y. Hirata, J. Mater. Res., 14, 957 (1999). https://doi.org/10.1557/JMR.1999.0127
  8. K. Huang, M. Feng and J. B. Goodenough, J. Am. Ceram. Soc., 81, 357 (1998).
  9. K. Yamashita, K. V. Ramanujachary and M. Greenblatt, Solid State Ionics, 81, 53 (1995). https://doi.org/10.1016/0167-2738(95)99031-H
  10. M. Boutonnet, J. Kizling, P. Stenius and G. Maire, Colloid. Surface., 5, 209 (1982). https://doi.org/10.1016/0166-6622(82)80079-6
  11. H. -J. Kim and D. S. Bae, Kor. J. Mat. Res. 21(10), 568 (2011). https://doi.org/10.3740/MRSK.2011.21.10.568
  12. J. Fang, J. Wang, S. C. Ng, C. H. Chew and L. M. Gan, Nanostruct. Mater., 8, 499 (1997). https://doi.org/10.1016/S0965-9773(97)00179-7
  13. D. S. Bae, K. S. Han and J. H. Adair, J. Am. Ceram. Soc., 85, 1321 (2002).
  14. J. H. Son, H. Y. Park, D. P. Kang and D. S. Bae, Colloid. Surface. Physicochem. Eng. Aspect., 313-314, 105 (2008). https://doi.org/10.1016/j.colsurfa.2007.04.080
  15. J. Wang, J. Fang, S. C. Ng, L. M. Gan, C. H. Chew, X. Wang and Z. Shen, J. Am. Ceram. Soc., 82, 873 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01848.x
  16. A. J. Zarur and J. Y. Ying, Nature, 403, 65 (2000). https://doi.org/10.1038/47450
  17. R. N. Bhargava, V. Chhabras, T. Som, A. Ekimov and N. Taskar, Phys. Status Solidi B, 229, 897 (2002). https://doi.org/10.1002/1521-3951(200201)229:2<897::AID-PSSB897>3.0.CO;2-C
  18. Ph. Monnoyer, A. Fonseca and J. B. Nagy, Colloid. Surface. Physicochem. Eng. Aspect., 100, 233 (1995). https://doi.org/10.1016/0927-7757(95)03187-I
  19. K. Osseo- Asare, Handbook of Microemulsion Science and Technology, p. 549-603, ed. P. Kumar and K. L. Mittal, Marcel Dekker Inc., NY, USA (1999).