DOI QR코드

DOI QR Code

Interchannel RF Power Fluctuation in WDM-RoF System Employing Photonic Crystal Fiber

광결정 광섬유를 이용한 WDM-RoF 시스템의 채널간 전력변화 편차 분석

  • 김소은 (광주과학기술원 고등광기술연구소) ;
  • 이충규 (조선대학교 전자공학과)
  • Received : 2012.02.13
  • Accepted : 2012.03.09
  • Published : 2012.04.30

Abstract

In this paper, we report that the differences between RF power levels can be improved in wavelength division multiplexing - radio over fiber (WDM-RoF) system by using a photonic crystal fiber. In a WDM-RoF system, each WDM channel experiences different received RF power level fluctuation in remote node (RN) because of wavelength-dependent dispersion. Since each WDM channel experiences different power fluctuation, the RF power fluctuation acts as a design constraint in viewpoint of network design. We designed a photonic crystal fiber to improve the effect of wavelength- dependent dispersion on RF power fluctuation. Also, we analyzed the wavelength-dependent difference of inter-channel RF power fluctuations.

파장분할다중화-무선광통신(WDM-RoF) 시스템에서 광결정 광섬유를 이용하여 채널 간 고주파신호들의 전력변화의 편차를 분석하여 이들을 조절할 수 있음을 확인하였다. WDM-RoF 시스템의 경우, 원격노드에서의 고주파 신호 특성은 파장 의존성을 갖는 단일모드 광섬유의 분산 특성으로 인해 전송거리 증가에 대한 고주파신호 수신 전력 변화가 채널의 파장에 따른 편차를 나타내게 되며, 이는 전체 시스템 설계시 전송거리에 대한 제한 요소로 작용할 수 있다. 광결정 광섬유의 분산보상 특성을 이용하여 WDM 채널에 따른 고주파 전송특성을 개선할 수 있는 광결정 광섬유를 설계하고, 이를 통해 채널간 고주파 전송특성의 편차를 분석하였다.

Keywords

References

  1. A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, T. Thomas, "LTE-advanced: next-generation wireless broadband technology," IEEE Wireless Communications, vol. 17, no. 3, pp. 10 - 22, 2010.
  2. R.A. Griffin, H.M. Salgado, P.M. Lane, J.J. O'Reilly, "System capacity for millimeter-wave radio-over-fiber distribution employing an optically supported PLL," J. Lightwave Technology, vol. 17, no. 12, pp. 2480-2487, 1999. https://doi.org/10.1109/50.809666
  3. B. Wilson, Z, Ghassemlooy, I. Darwazeh, Analogue optical fibre communications, London, U.K.: IEE, 1995.
  4. A. K. Dutta, N. K. Dutta, M. Fukiwara, WDM Technologies: Passive Optical Components, San Diego, USA:Academic Press, 2003.
  5. I. Kaminow, T. Li, A. E. Willner, Optical Fiber Telecommunications V, Burlington, USA:Academic Press, 2008.
  6. H. Toda, T. Nakasyotani, T. Kuri, K.-I. Kitayama, "WDM mm-wave-band radio-on-fiber system using single supercontinuum light source in cooperation with photonic up-conversion," International Topical Meeting on Microwave Photonics (MWP 2004), pp. 161-164, Oct 2004.
  7. Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, L. Chen, "WDM-RoF-PON Architecture for Flexible Wireless and Wireline Layout," J. Opt. Commun. Netw. vol. 2, pp. 117-121, 2010. https://doi.org/10.1364/JOCN.2.000117
  8. G. H. Smith, D. Novak, Z. Ahmed, "Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators," IEEE Trans. Microwave Theory and Techniques, vol. 45, no. 8, pp. 1410-1415, 1997. https://doi.org/10.1109/22.618444
  9. 김소은, 박철수, 이충규, "광결정 광섬유를 갖는 WDM-ROF 시스템의 고주파 신호전송특성 분석," 한국해양정보통신학회 논문지, 제15권 1호, pp. 188-194, 2011.
  10. Corning, "Corining SMF-28 Optical Fiber: Product Information," PI1036, April 2002.
  11. J. C. Knight, T. A. Birks, P. St. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett,. vol. 21, no. 19, pp. 1547-1549, 2006.
  12. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett., vol. 22, no. 13, pp. 961-963, 1997. https://doi.org/10.1364/OL.22.000961
  13. F. Gerome, J. Auguste, and J. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett., vol. 29, no. 23, pp. 2725-2727, 2004. https://doi.org/10.1364/OL.29.002725
  14. Soan Kim, Chul-Sik Kee, "Dispersion properties of dual-core photonic quasicrystal fiber," Opt. Express, vol. 17, no. 18, pp. 15885-15890, 2009. https://doi.org/10.1364/OE.17.015885