DOI QR코드

DOI QR Code

Rainfall Characteristics in the Tropical Oceans: Observations using TRMM TMI and PR

열대강우관측(TRMM) 위성의 TMI와 PR에서 관측된 열대해양에서의 강우 특성

  • Seo, Eun-Kyoung (Department of Earth Science Education, Kongju National University)
  • 서은경 (공주대학교 지구과학교육과)
  • Received : 2011.10.18
  • Accepted : 2011.12.08
  • Published : 2012.04.30

Abstract

The estimations of the surface rain intensity and rain-related physical variables derived from two independent Tropical Rainfall Measuring Mission (TRMM) satellite sensors, TRMM Microwave Imager (TMI) and Precipitation Radar (PR), were compared over four different oceans. The precipitating clouds developed most frequently in the warmest sea surface temperature (SST) region of the west Pacific, which is 1.5 times more frequent than in the east Pacific and the tropical Atlantic oceans. However, the east Pacific exhibited the most intense rain intensity for the convective and mixed rain types while the tropical Atlantic showed the most intense rain intensity for all TMI rainy pixels. It was found that the deviation of TMI-derived rain rate yielded a big difference in region-to-region and rain type-to-type if the PR rain intensity value is assumed to be closer to the truth. Furthermore, the deviation by rain types showed opposite signs between convective and non-convective rain types. It was found that the region-to-region deviation differences reached more than 200% even though the selected tropical oceans have relatively similar geophysical environments. Therefore, the validation for the microwave rain estimation needs to be performed according to both rain types and climate regimes, and it also requires more sophisticated TMI algorithm which reflects the locality of rainfall characteristics.

열대강우관측(TRMM) 위성에 탑재된 두 독립적인 기기인 마이크로파 센서(TMI)와 강수레이더(PR)를 통해 추정된 지표에서의 강우강도와 강수 관련 변수들을 네 개의 주요 열대해양에서 비교하였다. 해수면의 온도가 가장 높은 서태평양에서 가장 많은 강수구름이 발생하며, 이는 동태평양과 대서양 보다 1.5배 많은 빈도수이다. 반면 대류형과 혼합형에서 동태평양이 가장 강한 강우강도를 나타냈으며, 전체 강수 화소에 대해서는 대서양이 가장 강한 강우강도를 보였다. 한편 PR의 강우강도를 참값으로 볼 때 TMI의 강우강도의 편향은 강수유형과 지역에 따라 그 크기가 매우 다르게 나타났다. 더욱이 강수유형별 편향은 서로 다른 부호를 보였다. 특히 이 연구에서 선정한 열대해양들은 비교적 유사한 지구물리적 환경을 가지고 있지만, 그 편향의 크기가 지역에 따라 2배 이상의 차이가 일어났다. 따라서 마이크로파로부터 추정된 강수량에 대한 검증은 강수유형별 및 지역적으로 수행되어야 하며, 또한 국지적 강수 특성을 고려한 보다 정교한 TMI 알고리즘의 개발 및 개선이 필요함을 의미한다.

Keywords

References

  1. 서은경, 2011, TRMM 위성의 강수레이더에서 관측된 동아시아 여름 강수의 특성. 한국지구과학회지, 32, 33-45. https://doi.org/10.5467/JKESS.2011.32.1.33
  2. Adler, R.F., Yeh, H.Y.M., Pasad, N., Tao, W.K., and Simpson, J., 1991, Microwave simulations of a tropical rainfall system with a three-dimensional cloud model. Journal of Applied Meteorology, 30, 924-953. https://doi.org/10.1175/1520-0450-30.7.924
  3. Berg, W., Ecuyer, T.L., and Kummerow, C., 2006, Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. Journal of Applied Meteorology and Climatology, 45, 434-454. https://doi.org/10.1175/JAM2331.1
  4. Berg, W., Kummerow, C., and Morales, C.A., 2002, Differences between East and West Pacific rainfall systems. Journal of Climate, 15, 3659-3672. https://doi.org/10.1175/1520-0442(2002)015<3659:DBEAWP>2.0.CO;2
  5. Biggerstaff, M.I. and Seo, E.-K., 2010, An EOF-Based Comparison and Evaluation of Simulated Passive Microwave Signatures to Observations Over Tropical Oceans. Journal of Geophysical Research, 115, doi : 10.1029/2009JD013029.
  6. Biggerstaff, M.I., Seo, E.-K., Hristova-Veleva, S., and Kim, K.-Y., 2006, Impact of cloud model microphysics on passive microwave retrievals of cloud properties. Part I: Model comparison using EOF analyses. Journal of Applied Meteorology and Climatology, 45, 930-954. https://doi.org/10.1175/JAM2372.1
  7. Brown, R.G. and Zhang, C., 1997, Variability of Midtropospheric Moisture and Its Effect on Cloud-Top Height Distribution during TOGA COARE. Journal of Atmospheric Sciences, 54, 2760-2774. https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2
  8. Emanuel, K.A., Neelin, J.D., and Bretherton, C.S., 1994, On large-scale circulations in convecting atmosphere. Quarterly Journal of the Royal Meteorological Society, 120, 1111-1143. https://doi.org/10.1002/qj.49712051902
  9. Houze, R.A.Jr., 2004, Mesoscale Convective Systems. Reviews of Geophysics, 42, RG4003, doi : 10.1029/2004RG000150.
  10. Iguchi, T., Kozu, T., Meneghini, R., Awaka, J., and Okamoto, K., 2000, Rain-profiling algorithm for the TRMM Precipitation Radar. Journal of Applied Meteorology, 39, 2038-2052. https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2
  11. Iguchi, T. and Meneghini, R., 1994, Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne of spaceborne radar data. Journal of Atmospheric and Oceanic Technology, 11, 1507-1516. https://doi.org/10.1175/1520-0426(1994)011<1507:IOSFMF>2.0.CO;2
  12. Ikai, J. and Nakamura, K., 2003, Comparison of Rain Rates over the Ocean Derived from TRMM Microwave Imager and Precipitation Radar, Journal of Atmospheric and Oceanic Technology, 20, 1709-1726. https://doi.org/10.1175/1520-0426(2003)020<1709:CORROT>2.0.CO;2
  13. Johnson, R.H., Rickenbach, T., Rutledge, S.A., Ciesielski, P., and Schubert, W., 1999, Trimodal characteristics of tropical convection. Journal of Climate, 12, 2397-2418. https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
  14. Kingsmill, D.E. and Houze, R.A.Jr., 1999, Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quarterly Journal of the Royal Meteorological Society, 125, 1209-1229. https://doi.org/10.1256/smsqj.55605
  15. Kummerow, C.D., Barnes, W., Kozo, T., Shiute, J., and Simpson, J., 1998, The Tropical Rainfall Measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15, 809-817. https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
  16. Kummerow, C.D., Hong, Y., Olson, W.S., Yang, S., Adler, R.F., McCollum, J., Ferraro, R., Petty, G., Shin, D.B., and Wilheit, T.T., 2001, The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. Journal of Applied Meteorology, 40, 1801-1820. https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
  17. Kummerow, C.D., Olson, W.S., and Giglo, L., 1996, A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Transactions on Geoscience and Remote Sensing, 34, 1213-1232. https://doi.org/10.1109/36.536538
  18. Lau, K.M. and Wu, H.T., 2003, Warm rain processes over tropical oceans and climate implications. Geophysical Research Letters, 30, 2290, doi : 10.1029/2003GL018567.
  19. McPhaden, M.J. and Picaut, J., 1990, El Nino-Southern Oscillation displacements of the western equatorial Pacific warm pool. Science, 250, 1385-1388. https://doi.org/10.1126/science.250.4986.1385
  20. Nesbitt, S.W., Zipser, E.J., and Kummerow, C.D., 2004, An examination of version-5 rainfall estimates from the TRMM microwave imager, precipitation radar, and rain gauges on global, regional, and storm scales. Journal of Applied Meteorology, 4, 1016-1036.
  21. Olson, W.S., Bauer, P.C., Kummerow, C.D., Hong, Y., and Tao, W., 2001b, A melting-layer model for passive/ active microwave remote sensing applications. Part II: Simulation of TRMM observations. Journal of Applied Meteorology, 40, 1164-1179. https://doi.org/10.1175/1520-0450(2001)040<1164:AMLMFP>2.0.CO;2
  22. Olson, W.S., Hong, Y., Kummerow, C.D., and Turk, J., 2001a, A texture-polarization method for estimating convective-stratiform precipitation area coverage from passive microwave radiometer data. Journal of Applied Meteorology, 40, 1577-1591. https://doi.org/10.1175/1520-0450(2001)040<1577:ATPMFE>2.0.CO;2
  23. Olson, W.S., Kummerow, C.D., Hong, Y., and Tao, W.K., 1999, Atmospheric latent heating distributions in the Tropics derived from satellite passive microwave radiometer measurements. Journal of Applied Meteorology, 38, 633-664. https://doi.org/10.1175/1520-0450(1999)038<0633:ALHDIT>2.0.CO;2
  24. Olson, W.S., Kummerow, C.D., Yang, S., Petty, G.W., Tao, W.K., Bell, T.L., Braun, S.A., Wang, Y., Lang, S.E., Johnson, D.E., and Chiu, C., 2006, Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Method and uncertainties. Journal of Applied Meteorology and Climatology, 45, 702-720. https://doi.org/10.1175/JAM2369.1
  25. Rajendran, K. and Nakazawa, T., 2005, Systematic Differences between TRMM 3G68 PR and TMI Rainfall Estimates and the Possible Association with Life Cycle of Convection. Scientific Online Letters on the Atmosphere, 1, 165-168.
  26. Ryu, G.H., Sohn, B.J., Kummerow, C.D., Seo, E.-K., and Tripoli, G.J., 2011, Rain rate characteristics over the Korean peninsula and improvement of Goddard Profiling (GPROF) database on TMI rainfall retrieval. Journal of Applied Meteorology and Climatology, accepted.
  27. Seo, E.-K., 2000, Sensitivity of hydrometeor profiles and satellite brightness temperatures to model microphysics from MCSs over land and ocean: Model comparison using EOF analysis and implications for rain and latent heat retrievals. Ph.D. dissertation, Texas A and M University, 177 p.
  28. Seo, E.-K. and Biggerstaff, M.I., 2006, Impact of cloud model microphysics on passive microwave retrievals of cloud properties. Part II: Uncertainty in rain, hydrometeor structure, and latent heating retrievals. Journal of Applied Meteorology and Climatology, 45, 955-972. https://doi.org/10.1175/JAM2374.1
  29. Seo, E.-K., Sohn, B.J., and Liu, G., 2007, How TRMM precipitation radar and microwave imager retrieved rain rates differ. Geophysical Research Letters, 34, L24803, doi : 10.1029/2007GL032331.
  30. Seo, E.-K., Sohn, B.J., Liu, G., Ryu, G.H., and Han, H.J., 2008, Improvement of Microwave Rainfall Retrievals in Bayesian Retrieval Algorithms. Journal of the Meteorological Society of Japan, 86, 1-5. https://doi.org/10.2151/jmsj.86.1
  31. Serra, Y.L. and McPhaden, M.J., 2003, Observed regional and temporal variability of rainfall over the tropical Pacific and Atlantic Oceans. Annual Maximum Series (AMS) Annual Meeting, Long Beach, CA, J1.2.
  32. Shea, D., Trenberth, K., and Reynolds, R., 1990, A Global Monthly Sea Surface Temperature Climatology. NCAR technical note (NCAR/TN-345+STR), Boulder, Colorado, 167 p.
  33. Short, D.A. and Nakamura, K., 2000, TRMM radar observations of shallow precipitation over the tropical oceans. Journal of Climate, 13, 4107-4124. https://doi.org/10.1175/1520-0442(2000)013<4107:TROOSP>2.0.CO;2
  34. Simpson, J., Alder, R.F., and North, G.R., 1988, A proposed tropical rainfall measuring mission (TRMM) satellite. Bulletin of American Meteorology Society, 69, 278-295. https://doi.org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2
  35. Smith, E.A., Mugnai, A., Cooper, H.J., Tripoli, G.J., and Xiang, X., 1992, Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness temperature properties of a time-dependent cloud-radiation model. Journal of Applied Meteorology, 31, 506-531. https://doi.org/10.1175/1520-0450(1992)031<0506:FFSPPR>2.0.CO;2
  36. Smith, E.A., Xiang, X., Mugnai, A., and Tripoli, G.J., 1994, Design of inversion-based precipitation profile retrieved algorithm using an explicit cloud model for initial guess microphysics. Meteorology and Atmospheric Physics, 54, 53-78. https://doi.org/10.1007/BF01030052
  37. Steiner, M., Houze, R.A.Jr., and Yuter, S.E., 1995, Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. Journal of Applied Meteorology, 34, 1978-2007. https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2
  38. Stout, J. and Kwiatkowski, J., 2004, Selected analyses of TRMM instantaneous rainfall data. Geoscience and Remote Sensing Symposium Proceedings, 2, 914-917.
  39. Tao, W.K. and Simpson, J., 1993, Goddard Cumulus Ensemble Model. Part I: Model description. Terrestrial, Atmospheric Oceanic Sciences, 4, 35-72.
  40. Vincent, E.M., Lengaigne, M., Menkes, C.E., Jourdain, N.C., Marchesiello, P., and Madec, G., 2011, Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Climate Dynamics, 36, 1881-1896. https://doi.org/10.1007/s00382-009-0716-3
  41. Wentz, F.J., Gentemann, C., Smith, D., and Chelton, D., 2000, Satellite measurements of sea surface temperatures through clouds. Science, 288, 847-850. https://doi.org/10.1126/science.288.5467.847
  42. Wilheit, T.T., Chang, A.T.C., Rao, M.S.V., Rodgers, E.B., and Theon, J.S., 1977, A satellite technique for quantitatively mapping rainfall rates over the oceans. Journal of Applied Meteorology, 16, 551-560. https://doi.org/10.1175/1520-0450(1977)016<0551:ASTFQM>2.0.CO;2
  43. Wu, R. and Weinman, J.A., 1984, Microwave radiances from precipitating clouds containing aspherical ice, combined phase, and liquid hydrometeors. Journal of Geophysical Research, 89, 7170-7178. https://doi.org/10.1029/JD089iD05p07170
  44. Yan, X.H., Ho, C.R., Zheng, Q., and Klemas, V., 1992, Temperature and Size Variabilities of the Western Pacific Warm Pool. Science, 258, 1643-1645, doi :10.1126/science.258.5088.1643.
  45. Yang, S., Olson, W.S., Wang, J.J., Bell, T.L., Smith, E.A., and Kummerow, C.D., 2006, Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. Journal of Applied Meteorology and Climatology, 45, 721-739. https://doi.org/10.1175/JAM2370.1
  46. Yuter, S., Millerl, M., Stout, J., Wood, R., Kwiatkowski, J., Hornl, D., and Spoonerl, C., 2006, Remaining challenges in satellite precipitation estimation using the Tropical Rainfall Measuring Mission. 4th European Conference on Radar in Meteorology and Hydrology, Barcelona, Spain, 1-4.

Cited by

  1. Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite vol.37, pp.7, 2016, https://doi.org/10.5467/JKESS.2016.37.7.420
  2. Precipitating Cloud Characteristics during Changma as Seen in TRMM PR Observations vol.2017, pp.1687-9317, 2017, https://doi.org/10.1155/2017/8598594
  3. Accuracy Assessment of the Satellite-based IMERG’s Monthly Rainfall Data in the Inland Region of Korea vol.39, pp.6, 2018, https://doi.org/10.5467/JKESS.2018.39.6.533