DOI QR코드

DOI QR Code

Antioxidant Activities and Acetylcholinesterase Inhibitory Activities from Seaweed Extracts

해조류의 항산화 활성 및 아세틸콜린에스테라제 저해 활성

  • Jeon, Young-Eun (Dept. of Food Sciences and Nutrition, Hallym University) ;
  • Yin, Xing-Fu (Dept. of Food Sciences and Nutrition, Hallym University) ;
  • Lim, Soon-Sung (Dept. of Food Sciences and Nutrition, Hallym University) ;
  • Chung, Cha-Kwon (Dept. of Food Sciences and Nutrition, Hallym University) ;
  • Kang, Il-Jun (Dept. of Food Sciences and Nutrition, Hallym University)
  • Received : 2012.01.13
  • Accepted : 2012.02.15
  • Published : 2012.04.30

Abstract

This study was conducted to investigate the antioxidant and acetylcholinesterase (AChE) inhibitory activities of extracts from various seaweed. The extracts of $Sargassum$ $thunbergii$ (91.3%), $Polysiphonia$ $morrowii$ (90.7%), $Ecklonia$ $cava$ (89.9%), and $Artemisia$ $fukudo$ (85.9%) showed over 80% high radical scavenging activities at the final concentration of 40 ${\mu}g$/mL. The $Artemisia$ $fukudo$ extract showed the highest inhibition activity of 30.2% on AChE at the final concentration of 10 ${\mu}g$/mL. The extract of $Porphyra$ $tenera$, $Costaria$ $costata$, $Monostroma$ $nitidum$, $Ecklonia$ $cava$, and $Agarum$ $clathratum$ against AChE at a concentration of 10 ${\mu}g$/mL exhibited inhibition of 26.6%, 25.3%, 23.4%, 21.7%, 20.4% and 19.9%, respectively. The bioautography results showed that the mixtures of structurally diverse compounds were thought to affect AChE inhibitory activity. These results suggest that extracts from seaweed with their high quality components may be effective in the prevention of Alzheimer's disease and may be used to develop various functional food products.

본 연구에서는 퇴행성 질환인 치매의 예방 및 치료를 위한 물질 탐색으로써 여러 가지 해조류 추출물을 가지고 항산화 활성 및 AChE 저해활성을 살펴보았다. DPPH법으로 항산화 활성을 살펴본 결과, 최종농도 40 ${\mu}g$/mL에서 지충이(91.3%), 모로우붉은실(90.7%), 감태(89.9%), 큰비쑥(85.9%)이 80% 이상의 radical 소거활성을 나타내었다. AChE 저해활성에서는 최종농도 10 ${\mu}g$/mL에서 큰비쑥 추출물(30.2%)이 가장 높은 활성을 나타내었으며, 다음으로는 김 추출물(26.6%), 쇠미역(25.3%), 참홑파래(23.4%), 감태(21.7%), 구멍쇠미역(20.4%), 지충이(19.9%) 순으로 총 7종의 해조류가 약 20% 이상의 AChE 저해활성을 나타내었다. 7종의 해조류를 가지고 TLC bioassay를 통하여 살펴본 결과, 여러 compound들에 의해 AChE 저해 활성이 나타나는 것으로 생각된다. 따라서 본 연구 결과는 치매치료제 및 억제를 위한 신규의 생물 소재로 해조류가 가치가 있음을 시사하고 있다.

Keywords

References

  1. Reiter RJ. 1995. Oxidative process and antioxidative defense mechanism in the aging brain. FASEB J 9: 526-533.
  2. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Heber LE, Hennekens CH, Taylor JO. 1989. Prevalence of Alzheimer's disease in a community population of older persons, higher than previously reported. JAMA 262: 2551-2556. https://doi.org/10.1001/jama.1989.03430180093036
  3. Davies P, Maloney AJ. 1976. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 25: 1403.
  4. Muir JL. 1997. Acetylcholine, aging, and Alzheimer's disease. Pharmacol Biochem Behav 56: 687-696. https://doi.org/10.1016/S0091-3057(96)00431-5
  5. Kurz A. 1998. The therapeutical potential of tacrine. J Neural Transm Suppl 54: 295-299. https://doi.org/10.1007/978-3-7091-7508-8_29
  6. Sugimoto H. 2001. Donepezil hydrochloride: a treatment drug for Alzheimer's disease. The Chemical Record 1: 63-73. https://doi.org/10.1002/1528-0691(2001)1:1<63::AID-TCR9>3.0.CO;2-J
  7. Jann MW. 2000. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer's disease. Pharmacotherapy 20: 1-12. https://doi.org/10.1592/phco.20.1.1.34664
  8. Zarotsky V, Sramek JJ, Cutler NR. 2003. Galantamine hydrobromide: an agent for Alzheimer's disease. Am J Health-Syst Pharm 60: 446-452.
  9. Nordberg A, Svensson AL. 1998. Cholinesterase Inhibitors in the treatment of Alzheimer's disease: a comparison of tolerability and pharmacology. Drug Saf 19: 465-480. https://doi.org/10.2165/00002018-199819060-00004
  10. Jimenez-Escring A, Goni Cambrodon I. 1999. Nutritional evaluation and physiological effects of edible seaweeds. Arch Latinoam Nutr 49: 114-120.
  11. Chung HY, Ma WCJ, Ang PO, Kim JS, Chen F. 2003. Seasonal variations of bromophenols in brown plants (Padina arborescens, Saegassum siliquastrum, and Lobophora variegata) collected in Hong Kong. J Agric Food Chem 51: 2619-2624. https://doi.org/10.1021/jf026082n
  12. Koing GM, Kehraus S, Seibert SF, Abdel-Lateff A, Muller D. 2005. Natural products from marine organism and their associated microbes. Chem Biochem 7: 229-238.
  13. Yoon SJ, Cho YS, Nam JH, Lee HH, Kim E, Hong YK. 2008. Effects of several seaweed extracts on the viability of human keratinocyte HaCaT cells. J Kor Fish Soc 41: 68-72.
  14. Ryo T, Hiroko IS, Kaeko H, Saburo H, Susumu H. 1998. Concurrence of agaroid and carrageenan chains in funoran from the red seaweed Gloiopeltis furcata post et ruprecht. Carbohydr Polym 35: 81-87. https://doi.org/10.1016/S0144-8617(97)00230-0
  15. Sa JH, Shin IC, Jeong KJ, Shim TH, Oh HS, Park SL, Cheung EH, Kim SN, Kim GK, Choi DS, Kwon YS, Kim CM. 2002. Catechin content and antioxidant effect from Rosa davurica Pall. Kor J Pharmacogn 33: 177-181.
  16. Ellman GL, Callaway E. 1961. Erythrocyte cholinesteraselevels in mental patients. Nature 192: 1216. https://doi.org/10.1038/1921216a0
  17. Yang Z, Zhang X, Duan D, Song Z. 2009. Modified TLC bioautographic method for screening acetylcholinesterase inhibitors from plant extracts. J Sep Sci 32: 3257-3259. https://doi.org/10.1002/jssc.200900266
  18. Jeong EJ, Sung SH, Kim JW, Kim SH, Kim YC. 2008. Rhus verniciflua stokes attenuates glutamate-induced neurotoxicity in primary cultures of rat cortical cells. Nat Prod Sci 14: 156-160.
  19. Choi SY, Kim SY, Hur JM, Choi HG, Sung NJ. 2006. Antioxidant activity of solvent extracts from Sargassum thunbergii. J Korean Soc Food Sci Nutr 35: 139-144. https://doi.org/10.3746/jkfn.2006.35.2.139
  20. Kang JY, Khan MNA, Park NH, Cho JY, Lee MC, Fujii H, Hong YK. 2008. Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. J Ethnopharmacol 116: 187-190. https://doi.org/10.1016/j.jep.2007.10.032
  21. Lee SY, Song EJ, Kim KBWR, Yoon SY, Kim SJ, Lee SJ, Hong YK, Lim SM, Ahn DH. 2009. Antimicrobial activity of ethanol extract from Sargassum thunbergii. J Korean Soc Food Sci Nutr 38: 502-508. https://doi.org/10.3746/jkfn.2009.38.4.502
  22. Je JY, Ahn CB, Oh MJ, Kang SY. 2009. Antioxidant activity of a red seaweed Polysiphonia morrowii extract. Food Sci Biotechnol 18: 124-129.
  23. Vincenzo NT. 2001. Acetylcholinesterase in Alzheimer's disease. Mech of Ageing Dev 122: 1961-1969. https://doi.org/10.1016/S0047-6374(01)00309-8
  24. Younkin SG, Goodridge B, Katz J, Lockett G, Nafziger D, Usiak MF, Younkin LH. 1986. Molecular forms of acetylcholinesterases in Alzheimer's disease. Fed Proc 45: 2982-2988.
  25. Houghton PJ, Yuhao R, Melanie-Jayne H. 2006. Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23: 181-199. https://doi.org/10.1039/b508966m
  26. Rhee IK, Richard M, Rijn van RM, Robert V. 2003. Qualitative determination of false-positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem Anal 14: 127-131. https://doi.org/10.1002/pca.675
  27. Marstone A, Kissling J, Hostettmann K. 2002. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitor in plants. Phytochem Anal 13: 51-54. https://doi.org/10.1002/pca.623
  28. Berkov S, Bastida J, Nikolova M, Viladomat F, Codina C. 2008. Rapid TLC/GC-MS identification of acetylcholinesterase inhibitors in alkaloid extracts. Phytochem Anal 19: 411-419. https://doi.org/10.1002/pca.1066
  29. Wagner H, Bladt S, Zgainski EM. 1984. Plant Drug Analysis: A Thin Layer Chromatography Atlas. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo. p 51-90.
  30. Lee JK, Oh SH. 2008. Inhibitory effects of Artemisia fukudo Makino extracts for nitric oxide generation in LPS- and interferon-${\gamma}$-stimulated RAW 264.7 cells. J East Asian Soc Dietary Life 18: 198-206.
  31. Kim JO, Kim YS, Lee JH, Kim MN, Rhee SH, Moon SH, Park KY. 1992. Antimutagenic effect of the major volatile compounds identified from mugwort (Artemisia asictica Nakai) leaves. J Korean Soc Food Nutr 21: 308-313.
  32. Lee H, Lin JY. 1988. Antimutagenic activity of extracts from anticancer drugs in Chinese medicine. Mutat Res Genet Toxicol 204: 229-234. https://doi.org/10.1016/0165-1218(88)90093-6
  33. Yoon WJ, Moon JY, Song G, Lee YK, Han MS, Lee JS, Ihm BS, Lee WJ, Lee NH, Hyun CG. 2010. Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Food Chem Toxicol 48: 1222-1229. https://doi.org/10.1016/j.fct.2010.02.014
  34. Daise LL, Alviano DS, Alviano CS, Kolodziejczyk PP. 2008. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 69: 1732-1738. https://doi.org/10.1016/j.phytochem.2008.02.014
  35. Miyazawa M, Watanabe H, Kameoka H. 1997. Inhibition of acetylcholinesterase activity by monoterpenoids with a p-menthane skeleton. J Agric Food Chem 45: 677-679. https://doi.org/10.1021/jf960398b
  36. Park CK, Kang TJ. 2000. The nutritional on functional constituents of laver. Bull Fish Sic Inst Yosu Nat'l Univ 9: 133-137.
  37. Mahinda S, Ahn CB, Je JY. 2010. Enzymatic extracts from edible red algae, Porphyra tenera, and their antioxidant, anti-acetylcholinesterase, and anti-inflammatory activities. Food Sci Biotechnol 19: 1551-1557. https://doi.org/10.1007/s10068-010-0220-x
  38. Jung MK, Park MS. 2007. Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules 12: 2130-2139. https://doi.org/10.3390/12092130
  39. Svetlana E, Roza S, Kim SM, Um BH, Vladimir I, Tatyana Z. 2011. Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: structural characteristics and anticancer activity. Appl Biochem Biotechnol 164: 841-850. https://doi.org/10.1007/s12010-011-9178-2
  40. Park IS, Choi NH, Kim JT, Ahn SH. 1998. The lipid accumulation suppressive effect of Monostroma nitidum in kidney of murine with hyperlipidemia induced by Triton WR-1339. Dongguk J The Institute of Oriental Medicine 6: 87-98.
  41. Lee JM, You SG, Kim SM. 2005. Functional activities of low molecular weight peptides purified from enzymatic hydrolysates of seaweeds. J Korean Soc Food Sci Nutr 34: 1124-1129. https://doi.org/10.3746/jkfn.2005.34.8.1124
  42. Myung CS, Shin HC, Bao HY, Yeo SJ, Lee BH, Kang JS. 2005. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: possible involvement of the inhibition of acetylcholinesterase. Arch Pharmacal Res 28: 691-698. https://doi.org/10.1007/BF02969360
  43. Wijesinghe WAJP, Ko SC, Jeon YJ. 2011. Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity. Nutr Res Pract 5: 93-100. https://doi.org/10.4162/nrp.2011.5.2.93
  44. Lee SH, Park MH, Heo SJ, Kang SM, Ko SC, Han JS, Jeon YJ. 2010. Dieckol isolated from Ecklonia cava inhibits ${\alpha}$- glucosidase and ${\alpha}$- amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food Chem Toxicol 48: 2633-2637. https://doi.org/10.1016/j.fct.2010.06.032
  45. Kim AR, Shin TS, Lee MS, Park JY, Park KE, Yoon NY, Kim JS, Choi JS, Jang BC, Byun DS, Park NK, Kim HR. 2009. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J Agric Food Chem 57: 3483-3489. https://doi.org/10.1021/jf900820x
  46. Yoon NY, Kim HR, Chung HY, Choi JS. 2008. Anti-hyperlipidemic effect of an edible brown algae, Ecklonia stolonifera, and its constituents on poloxamer 407-induced hyperlipidemic and cholesterol-fed rats. Arch Pharmacal Res 31: 1564-1571. https://doi.org/10.1007/s12272-001-2152-8

Cited by

  1. Effects of Agarum cribrosum on the Improvements in Treating Constipation and Plasma lipid Profiles vol.29, pp.2, 2013, https://doi.org/10.9724/kfcs.2013.29.2.185
  2. Effects of Dietary Intake of Agarum cribrosum Ethanol Extract on Lipid Level in Diet-induced Obese Rats vol.29, pp.4, 2013, https://doi.org/10.9724/kfcs.2013.29.4.361
  3. Nutritional Characteristics and Screening of Biological Activity of Agarum cribrosum vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.842
  4. Antioxidant Effect and Tyrosinase Inhibition Activity of Seaweeds Ethanol Extracts vol.42, pp.12, 2013, https://doi.org/10.3746/jkfn.2013.42.12.1893
  5. 톳(Hizikia fusiformis), 무화과(Ficus carica) 및 배(Pyrus pyrifolia)의 혼합 추출물을 이용한 생선커틀릿용 튀김옷의 기능성 vol.50, pp.6, 2012, https://doi.org/10.5657/kfas.2017.0721
  6. 우수한 탈취율과 항산화능을 갖는 다시마 추출물의 규명 vol.31, pp.3, 2012, https://doi.org/10.5764/tcf.2019.31.3.195
  7. Evaluation of sea mustard (Undaria pinnatifida) sporophylls from South Korea as fucoidan source and its corresponding antioxidant activities vol.22, pp.11, 2019, https://doi.org/10.1186/s41240-019-0141-4
  8. 국내 자생 갈조류의 생리활성 물질 분석 및 총 항산화능력 비교 연구 vol.52, pp.1, 2012, https://doi.org/10.9721/kjfst.2020.52.1.54
  9. Comparison of fucosterol content in algae using high-performance liquid chromatography vol.23, pp.3, 2020, https://doi.org/10.1186/s41240-020-00153-y