DOI QR코드

DOI QR Code

Anti-Inflammatory Activity of Austroinulin from Stevia rebaudiana in LPS-induced RAW264.7 Cells

스테비아로부터 분리한 Austroinulin의 RAW264.7 세포에 대한 항염증 효과

  • 변명우 (우송대학교 외식조리영양학부)
  • Received : 2012.02.24
  • Accepted : 2012.03.15
  • Published : 2012.04.30

Abstract

The leaves of $Stevia$ $rebaudiana$ are well-known in Japan, Korea, and China as a natural sweetener. Medicinal uses of this plant originated in Paraguay and Brazil in the form of aqueous decoctions of the leaves used as a contraceptive agent and for the treatment of hyperglycemia. In the present study, the antioxidant, anti-hypertension, and anti-inflammatory activities of $S.$ $rebaudiana$ extracts are investigated for their use in food. The biologically-active compound was isolated and purified from $S.$ $rebaudiana$. The isolated compound was identified as austroinulin ($C_{20}H_{34}O_3$; molecular weight 322) by mass, IR spectrophotometry, 1D, and 2D-NMR. Austroinulin was characterized as a diterpenoid possessing a 3-methylpenta-2,4-dienyl at C-9. When subjected to an inflammatory mediator inhibitory assay from lipopolysaccharide (LPS)-activated macrophages, the austroinulin inhibited the enhanced production of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) expression (10 ${\mu}g$/mL=67.9 and 45.1%, respectively). This was significant and dose-dependent. The results suggest that austroinulin from $S.$ $rebaudiana$ inhibited the NO and iNOS in RAW 264.7 cells.

본 연구에서는 스테비아는 이용성이 높은 식물임에도 불구하고 diterpene 성분에 대한 생리활성이 과학적으로 주로 연구된 바 없어 active-guided fractionation 방법을 이용하여 항염증 효과를 나타내는 지표화합물을 규명하기 위해 실리카겔 칼럼크로마토그래피 방법을 이용하여 분리 및 정제한 후, $^1H$$^{13}C$-NMR, COSY, DEPT, HMQC, HMBC spectrum(500 MHz, $CDCl_3$), MS, IR 분석을 통하여 분자량 322의 astroinulin임을 구조 동정하였다. 특히 HMBC spectrum을 통해 분리된 화합물이 decalin system에서 C-9에 3-methylpenta-2,4-dienyl 치환체를 가지고 있음을 알 수 있었다. 분리된 astroinulin을 RAW264.7 세포에 2.5, 5, 10 ${\mu}g$/mL 처리한 결과 농도 의존적으로 NO의 생성을 억제하였다. 마찬가지로 iNOS protein의 발현에서도 농도 의존적으로 저해 하였으며, 화합물을 2.5, 5, 10 ${\mu}g$/mL 처리한 결과 각각 11.4, 26.8, 45.1% 감소하였다. Astroinulin 화합물을 10 ${\mu}g$/mL의 낮은 농도에서 NO와 iNOS를 각각 67.9, 45.1%를 저해하는 결과를 나타내었다. 이와 같은 결과는 스테비아에서 분리된 astroinulin 화합물은 RAW264.7 세포에서 LPS에 의해 유도된 NO와 iNOS 단백질을 유의적으로 억제하는 것으로 확인되어 이를 이용한 기능성식품 및 의약품 개발 가능성을 지닌 약용 식물자원인 것으로 판단된다.

Keywords

References

  1. Leung AY, Foster S. 1996. Encyclopedia of common natural ingredients used in doods, drugs, and cosmetics. 2th ed. John Wiley & Sons, NY, USA. p 478-480.
  2. Komisseranko NF, Derkuch AI, Kovalyou IP, Bublik NP. 1994. Diterpene glycoside and phenylpropanoid of Stevia rebaudiana bertoni (astercae). Rast Res 1: 53-64.
  3. Oshima Y, Saito JI, Hikino H. 1986. Sterebins A, B, C and D, bisnorditerpenoids of Stevia rebaudiana leaves. Tetrahedron 42: 6443-6446. https://doi.org/10.1016/S0040-4020(01)88106-0
  4. Oshima Y, Saito JI, Hikino H. 1988. Sterebins E, F, G and H, diterpenoids of Stevia rebaudiana leaves. Phyochemistry 27: 624-626. https://doi.org/10.1016/0031-9422(88)83157-1
  5. Dacome AS, da Silva CC, da Costa CEM, Fontana JD, Adelmann J, da Costa SC. 2005. Sweet diterpenic glycoside balance of a new cultivar of Stevia rebaudiana (Bert.) Bertoni: isolation and quantitative distribution by chromatography, spectroscopic, and electrophoretic methods. Process Biochem 40: 3587-3594. https://doi.org/10.1016/j.procbio.2005.03.035
  6. Lailerd N, Saengsirisuwan V, Sloniger, JA, Toskulkao C, Henriksen E. 2004. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle. Metabolism 53: 101-107. https://doi.org/10.1016/j.metabol.2003.07.014
  7. Wang BS, Wu JH, Shyur LF, Kuo YH, Chang ST. 2002. Antioxidant activity of abietane-type diterpenes from heartwood of Taiwania cryptomerioides Hayata. Holzforschung 56: 487-492. https://doi.org/10.1515/HF.2002.075
  8. Porto TS, Ramgel R, Furtado NAJC, de Carvalho TC, Martins CHG, Veneziani RCS, da Costa FB, Vinholis AHC, Cunha WR, Heleno VCG, Ambrosio SR. 2009. Pimaranetype diterpenes: antimicrobial activity against oral pathogen. Molecules 14: 191-199. https://doi.org/10.3390/molecules14010191
  9. Vallim MA, Barbosa JE, Cavalcanti DN, de Paula JC, da Silva VAGG, Teixeira VL, de Palmer Paixao ICN. 2010. In vitro antiviral activity of diterpenes isolated from the Brazilian brown alga Canstrocarpus cervicornis. J Med Plants Res 4: 2379-2382.
  10. Liao JF, Chiou WF, Shen YC, Wang GJ, Chen CF. 2011. Anti-inflammatory and anti-infectious effects of Evodia rutaecarpa (Wuzhuyu) and its major bioactive components. Chinese Med 6: 1-8. https://doi.org/10.1186/1749-8546-6-1
  11. Hoshino T, Tabuchi K, Hara A. 2010. Effects of NSAIDs on the inner ear: possible involvement in cochlear protection. Pharmaceuticals 3: 1286-1295. https://doi.org/10.3390/ph3051286
  12. Rimon G, Sidhu R, Lauver D, Lee J, Sharma N, Yuan C, Frieler R, Trievel R, Lucchesi B, Smith W. 2010. Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1. PNAS 107: 28-33. https://doi.org/10.1073/pnas.0909765106
  13. Anderson GD, Keys KL, Ciechi PAD, Masferrer JL. 2009. Combination therapies that inhibit cyclooxygenase-2 and leukotriene synthesis prevent disease in murine collagen induced arthritis. Inflamm Res 58: 109-117. https://doi.org/10.1007/s00011-009-8149-3
  14. Dogne JM, Hanson J, Supuran C, Pratico D. 2006. Coxibs and cardiovascular side-effects: from light to shadow. Curr Pharm Des 12: 917-975.
  15. Makins R, Ballinger A. 2003. Gastrointestinal side effects of drugs. Expert Opin Drug Saf 2: 421-429. https://doi.org/10.1517/14740338.2.4.421
  16. Lee MK, Choi YJ, Sung SH, Shin DI, Kim JW, Kim YC. 1995.Antihepatotoxic activity of icariin, a major constituent of Epimedium koreanum. Plant Med 61: 523-526. https://doi.org/10.1055/s-2006-959362
  17. Quijano L, Calderon JS, Comez F, Vega JL, Rios T. 1982. Diterpenes from Stevia monardaefolia. Phytochemistry 21: 1369-1371. https://doi.org/10.1016/0031-9422(82)80144-1
  18. Sholichin M, Yamasaki K, Miyama R, Yahara S, Tanaka O. 1980. Labdane-type diterpenes from Stevia rebaudiana. Phytochemistry 19: 326-327. https://doi.org/10.1016/S0031-9422(00)81986-X
  19. Lee ES, Ju HK, Moon TC, Lee E, Jang Y, Lee SH, Son JK, Baek SH, Chang HW. 2004. Inhibition of nitric oxide and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) production by propenone compound through blockade of nuclear factor (NF)-kB activation in cultured murine macrophage. Biol Pharm Bull 27: 617-620. https://doi.org/10.1248/bpb.27.617
  20. Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, Kim DH. 2005. Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull 28: 652-656. https://doi.org/10.1248/bpb.28.652
  21. Suh SJ, Chung TW, Son MJ, Kim SH, Moon TC, Son KH, Kim HP, Chang HW, Kim CH. 2006. The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-kB regulation, in RAW264.7 cells. Arch Biochem Biophys 447: 136-146. https://doi.org/10.1016/j.abb.2006.01.016
  22. Zhao F, Wang L, Liu K. 2009. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J Ethnopharmacol 122: 457-462. https://doi.org/10.1016/j.jep.2009.01.038
  23. Metzger BT, Barnes DM, Reed JD. 2008. Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharideinduced expression of inflammatory proteins in macrophage and endothelial cells. J Agric Food Chem 56: 3554-3560. https://doi.org/10.1021/jf073494t

Cited by

  1. Anti-inflammatory Effect of Stevia Rebaudiana as a Results of NF-κB and MAPK Inhibition vol.26, pp.3, 2013, https://doi.org/10.6114/jkood.2013.26.3.054
  2. Anti-Inflammatory Effects of Chrysanthemum indicum Water Extract in RAW 264.7 Cell as a Whole Plant vol.17, pp.4, 2015, https://doi.org/10.7586/jkbns.2015.17.4.341
  3. Anti-inflammatory effect of austroinulin and 6-O-acetyl-austroinulin from Stevia rebaudiana in lipopolysaccharide-stimulated RAW264.7 macrophages vol.62, 2013, https://doi.org/10.1016/j.fct.2013.09.011
  4. Anti-Inflammatory Effect of Ethanol Extract from Onion (Allium cepa L.) Peel on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1612
  5. Antioxidant and Anti-Inflammatory Effects of Chaenomeles sinensis Leaf Extracts on LPS-Stimulated RAW 264.7 Cells vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040422
  6. Anti-inflammatory Activity of Solvent Fractions from Ginseng Berry Extract in LPS-Induced RAW264.7 Cells vol.22, pp.6, 2014, https://doi.org/10.7783/KJMCS.2014.22.6.449
  7. Stereological study of kidney in streptozotocin-induced diabetic mice treated with ethanolic extract of Stevia rebaudiana (bitter fraction) vol.26, pp.2, 2017, https://doi.org/10.1007/s00580-016-2398-7
  8. 한약재 추출물의 항균활성 검증 vol.27, pp.6, 2012, https://doi.org/10.5352/jls.2017.27.6.611
  9. Stevia Genus: Phytochemistry and Biological Activities Update vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092733