DOI QR코드

DOI QR Code

Effects of Various Chitosan Oligomer Molecular Weight Levels on the Disorders of Lipid Metabolism and Immune-related Factors in Rats Treated 2,3,7,8-Tetrachlorodibenzo-p-dioxin

다이옥신계 TCDD(2,3,7,8-Tetrachlorodibenzo-p-dioxin)에 노출된 흰쥐의 지질대사 및 면역관련 인자에 대하여 키토산 올리고머의 분자량별 섭취효과

  • Lee, Joon-Ho (Dept. of Consumers' Life Information, Chungnam National University) ;
  • Hwang, Seok-Youn (Dept. of Biomedical Laboratory Science, Daejeon University) ;
  • Lim, Beong-Ou (Dept. of Life Science, Konkuk University) ;
  • Lee, Yeon-Sook (Dept. of Food and Nutrition, Seoul National University)
  • 이준호 (충남대학교 생활과학대학 소비자생활정보학과) ;
  • 황석연 (대전대학교 자연과학대학 임상병리학과) ;
  • 임병우 (건국대학교 의료생명대학 생명과학부 응용생화학전공) ;
  • 이연숙 (서울대학교 생활과학대학 식품영양학과)
  • Received : 2011.10.21
  • Accepted : 2012.03.26
  • Published : 2012.04.30

Abstract

This study was conducted to investigate the effects of various levels of chitosan oligomer (CO) molecular weight on the disorders of lipid metabolism and immune-related factors induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), that is a endocrine disrupter, using adult male rats (SD) for 3 weeks. These 40 animals were divided into five groups. Three kinds of CO were used by molecular weight (MW) (less than 1000, 1000~3000, and 5000~10000) and added 4% to basal diets respectively. TCDD (40 ${\mu}g$/kg B.W) was intraperitoneally injected into rats at the beginning of the experiment. The relative weights of the livers were increased in all rats treated with TCDD, and the brain and testis weights were increased in all CO diet groups, compared to the control and TCDD groups. The levels of white blood cells (WBC) and red blood cells (RBC), hemoglobin, hematocrits (HCT), and platelets were significantly lowered by treating TCDD. By the way, RBC and HCT tended to recover by CO diets. The elevation of serum total and HDL cholesterol levels induced by TCDD treatment was significantly reduced by CO (5000~10000 MW) diets. The apparent increasing of the total lipid, cholesterol, and triglyceride levels of rat livers induced by TCDD was tended to be suppressed in those fed CO diets. Especially, diets with less than 1000 MW significantly diminished liver triglycerides. The levels of serum immunoglobulin (Ig) A, IgG1 and IgM were significantly high in rats fed CO (5000~10000 MW) diets. The decreasing levels of IgE by treatment with TCDD tended to recover all the CO diet groups to the level of control group. In histochemical observation, the fat droplets and apoptosis of liver due to TCDD treatment were markedly alleviated in all CO diet groups. These results indicated that CO, though not regular according to molecular weight, can exert improving effects on lipid accumulation, hepatocytic disorders, abnormal blood cells, and some immunoglobulins induced by TCDD.

다이옥신계 TCDD에 노출된 흰쥐의 지질대사 및 면역관련 인자에 대하여 키토산 올리고머의 분자량에 따른 섭취효과를 알아보기 위해 Sprague-Dawley rat(수컷, 6주령)를 이용하여 TCDD를 40 ${\mu}g$/kg BW로 복강 내 주입하고 키토산 올리고머 분자량을 1000 이하, 1000~3000 및 5000~10000으로 수준을 달리하여 4% 첨가하고 3주간 실험하였다. 실험동물의 장기의 무게에서 간의 상대중량은 TCDD 투여군에서 모두 유의적으로 높았다. 뇌와 고환의 상대중량은 대조군과 TCDD 투여군에 비하여 TCDD 투여와 함께 키토산 올리고머를 섭취한 군에서 모두 현저히 증가하였다. 흉선의 상대중량은 대조군에 비하여 TCDD 투여군에서 모두 약 1/4 정도로 감소되었다. 혈액성분에서 적혈구의 수는 TCDD 투여에 의한 감소가 TCDD 투여와 함께 키토산 올리고머를 섭취한 군 모두에서 대조군 수준으로 증가되었고, 백혈구의 수와 헤모글로빈 및 헤마토크리트값은 TCDD 투여에 의한 감소가 TCDD 투여와 함께 키토산 올리고머의 분자량이 1000 이하인 것(COST)과 5000~10000인 것을 섭취한 군(COLT)에서 회복되는 경향을 보였다. 간 기능에 지표가 되는 효소인 혈청 GOT와 ALP는 대조군에 비하여 TCDD 투여군 모두에서 높은 경향을 보였다. 혈청 총콜레스테롤 및 HDL-콜레스테롤함량은 TCDD 투여에 의한 증가가 TCDD 투여와 함께 키토산 올리고머 분자량이 5000~10000인 것을 섭취한 군(COLT)에서 유의적으로 감소되어 콜레스테롤 억제효과가 나타났다. 간 지질에서는 총 지질과 콜레스테롤 및 중성지방이 유사한 경향으로 대조군에 비하여 TCDD 단독투여군에서 현저한 증가를 보여 지질축적이 되었는데 TCDD 투여와 함께 키토산 올리고머를 섭취한 군들에서 현저한 지질 억제효과를 내었다. 특히 TCDD투여와 함께 분자량 1000 이하의 키토산 올리고머를 섭취한 군(COST)이 TCDD 단독 투여 군에 비하여 간 콜레스테롤을 2/3 정도로, 간 중성지방을 1/2 정도로 뚜렷이 억제하였다. 변 중의 총 지질과 콜레스테롤함량은 TCDD 투여로 증가되는 경향이었고 TCDD 투여와 함께 키토산 올리고머 첨가한 군들에서는 TCDD군보다 대체로 낮은 경향이었다. 담즙산 배설은 대조군에 비하여 TCDD 투여군 모두에서 현저하게 낮았다. 간의 현미경적 관찰에서는 TCDD 투여에 의한 간세포의 지방구 침윤과 세포크기의 다양성, 간세포의 과염 색상과 공포변성이 TCDD 투여와 함께 키토산 올리고머를 섭취한 군 모두에서 현저하게 회복되었다. 혈청의 면역인자인 IgA와 IgM의 농도에서는 대조군과 TCDD 단독투여 군보다 TCDD 투여와 함께 키토산 올리고머의 분자량 5000~10000인 것을 섭취한 군(COLT)이 유의적으로 높은 농도를 나타내었다. 이와 같은 결과로 키토산 올리고머의 분자량이 1000 이하인 것은 혈구수의 회복과 간 지질억제에 효과적이었고, 분자량이 5000~10000인 것은 혈구수의 회복과 함께 혈청 콜레스테롤 저하 및 면역인자들 수준을 증가시키는 경향이 있었다. 특히 간의 조직병변이 키토산 올리고머 식이에 의해 정상으로 회복되는 경향을 관찰할 수 있었다. 그런데 키토산 올리고머의 분자량별 효과에 대하여는 앞으로 더 많은 연구가 필요한 것으로 사료된다.

Keywords

References

  1. Kang HS. 2002. Effects of chitosan and chitosan oligomer diets on the lipid metabolic disorders in rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). PhD Dissertation. Seoul Nat'l University, Seoul, Korea.
  2. Shon YH, Nam KS. 2001. Effect of chitosan oligosaccharides on dioxin-induced CYP1A1 activity and lipid peroxidation. J Chitin and Chitosan 6: 107-110.
  3. Hanson DJ. 1991. Dioxin toxicity: new studies prompt debate, regulatory action. C&EN (Chemical & Engineering News) Aug 12, p 7-14.
  4. Lee JH, Hwang SY, Lee YS. 2005. Preventive effects of chitosan on the disorders of hepatic functions and lipid metabolism in rats treated with 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD). Korean J Nutrition 38: 689-697.
  5. Shertzer HG, Nebert DW, Puga A, Ary M, Sonntag D, Dixon K, Robinson LJ, Cianciolo E, Dalton TP. 1998. Dioxin causes a sustained oxidative stress response in the mouse. Biochem Biophys Res Commum 253: 44-48. https://doi.org/10.1006/bbrc.1998.9753
  6. Enan E, Liu PCC, Matsumura F. 1992. 2,3,7,8-tetrachlorodibenzo- p-dioxin causes reduction of glucose transporting activities in the plasma membrane of adipose tissue and pancreas from the guinea pig. J Biol Chem 267: 19785-19791.
  7. Jones G, Butler WH. 1974. A morphological study of the liver lesion induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. J Pathol 112: 93-97. https://doi.org/10.1002/path.1711120204
  8. Germolec DR, Henry EC, Maronpot R, Foley JF, Adams NH, Gasiewicz TA, Luster MI. 1996. Induction of CYP1A1 and ALDH-3 in lymphoid tissue from Fisher 344 rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxical Appl Pharmacol 137: 57-66. https://doi.org/10.1006/taap.1996.0057
  9. Webb KB, Ayers SM, Mikes J, Evans G. 1986. The diagnosis of dixin-associated illness. Am J Prev Med 2: 103-108.
  10. Marilyn AF. 1991. Cancer mortality in workers exposed 2,3,7,8-tetrachlorodibenzo-p-dioxin. New Engl J Med 324: 212-218. https://doi.org/10.1056/NEJM199101243240402
  11. Poter TD, Coon MJ. 1991. Cytochrome P450: multiplicity of isomers, substrates and catalytic and regulation mechanism. J Biol Chem 266: 13469-13472.
  12. Hakansson H, Johansson L, Manzoor E, Ahlborg UG. 1994. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the hepatic 7-ethoxyresorufin O-deethylase activity in four rodent specis. Eur J Pharmacol 270: 279-284.
  13. Hanioka N, Jinno H, Toyo'oka T, Ando M. 1994. Effect of 1,2,4-trichlorodibenzo-p-dioxin on drug-metabolizing enzymes in the rat liver. Chemosphere 29: 1313-1324. https://doi.org/10.1016/0045-6535(94)90261-5
  14. Vos JG, Moore JA, Zinkl JG. 1973. Effect of 2,3,7,8-tetrachlorodibenzo- p-dioxin on the immune system of laboratory animals. Environ Health Perspect 5: 149-162. https://doi.org/10.1289/ehp.7305149
  15. Smialowicz RJ, Riddle MM, Williams WC, Diliberto JJ. 1994. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on humoral immunity and lymphocyte subpopulations: differences between mice and rats. Toxicol Applied Pharmacol 124: 248-256. https://doi.org/10.1006/taap.1994.1029
  16. Holsapple MP, Snyder NK, Wood SC, Morris DL. 1991. A review of 2,3,7,8-tetrachlorodibenzo-p-dioxin induced changes in immunocompetence. Toxicol 69: 219-255. https://doi.org/10.1016/0300-483X(91)90184-3
  17. Razdan A, Pettersson D, Pettersson J. 1997. Broiler chicken body weights, feed intakes, plasma lipid and small-intestinal bile acid concentrations in response to feeding of chitosan and pectin. Br J Nutr 78: 283-291. https://doi.org/10.1079/BJN19970146
  18. Kim SK, Lee EH. 1997. Food industrial application of chitin and chitosan. J Chitin and Chitosan 2: 43-59.
  19. Kim HK, Kim HS, Kang MI, Koh HB, Kim JR, Lee EH. 1997. Antibacterial effects of chitosan to E. coli causing diarrhea of piglets. Kor J Vet Publ Hlth 21: 97-105.
  20. Jung BO, Kim BR, Park HJ, Oh DY, Chung SJ. 2006. Antimicrobial activities of chitooligosaccharide and water- soluble chitosan. J Chitin and Chitosan 11: 108-112.
  21. Yoon HJ, Moon ME, Park HS, Im SY, Lee JH, Kim YH. 2007. Effects of chitosanoligosaccharide on the C. albicans- induced inflammatory effect in mice and RAW264.7 macrophage cells. J Chitin and Chitosan 12: 15-20.
  22. Chang HJ. 1997. Anticarcinogenic and immunopotentiating effects of chitosan hydrolysates with different average molecular weight. PhD Dissertation. Ehwa Woman's University, Seoul, Korea.
  23. Jeon YJ, Kim SK. 2001. Potential immuno-stimulating effect of antitumoral fraction of chitosan oligosaccharides. J Chitin and Chitosan 6: 163-167.
  24. Nam KS, So MS, Shon YH. 2007. Effect of chitosan oligosaccharide on carcinogenesis. J Chitin and Chitosan 12: 95-98.
  25. Shin JS, Lee KS, Nam KS. 2011. The effect of low molecular weight chitosan oligosaccharide on MMP-9 activity and TIMPs expression in human breast cancer cell. J Chitin and Chitosan 16: 204-208.
  26. Lee SG, Shin JS, Cho CW, Shon YH, Nam KS. 2010. Effect of low molecular weight chitosan oligosaccharide on colon cancer carcinogenesis. J Chitin and Chitosan 15: 233-236.
  27. Shon YH, Nam KS. 2001. Effect of chitosan oligosaccharides on dioxin-induced CYP1A1 activity and lipid peroxidation. J Chitin and Chitosan 6: 107-110.
  28. Reeves PG, Nielsen FH, Fahey GC. 1993. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition Ad Hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-1951.
  29. WHO/IPCS. 1989. Polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Health Criteria 88.
  30. Bagchi D, Shara MA, Bagchi M, Hassoun EA, Stohs SJ. 1993. Time-dependent effects of 2,3,7,8-tetrachlorodibenzop- dioxin on serum and urine levels of malondialdehyde, formaldehyde, acetaldehyde, and acetone in rats. Toxicol Applied Pharmacol 123: 83-88. https://doi.org/10.1006/taap.1993.1224
  31. Alsharif NZ, Grandjean CJ, Murray WJ, Stohs SJ. 1990. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced decrease in the fluidity of rat liver membranes. Xenobiotica 20: 979-988 https://doi.org/10.3109/00498259009046913
  32. Folch J, Less M, Sloaestanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-502.
  33. Sperry WM, Webb M. 1950. A revision of the Schoenheimer- Sperry method for cholesterol determination. J Biol Chem 187: 97-106.
  34. Fletcher MJ. 1968. A colorimetric method for estimating serum triglycerides. Clin Chim Acta 22: 393-397. https://doi.org/10.1016/0009-8981(68)90041-7
  35. Tokunaga T, Oku T, Hosoya N. 1986. Influence of chronic intake of new sweetener fructo oligosaccharide (neosugar) on growth and gastrointestinal function of the rat. J Nutr Sci Vitaminol 32: 111-121. https://doi.org/10.3177/jnsv.32.111
  36. Lim BO, Choue RW, Lee HY, Seong NK, Kim JD. 2003. Effect of the flavonoid components obtained from Scutellaria Radix on the histamine, immunoglobulin E and lipid peroxidation of spleen lymphocytes of Sprague-Dawley rats. Biosci Biotechnol Biochem 67: 1126-1129. https://doi.org/10.1271/bbb.67.1126
  37. Walden R, Schiller CM. 1985. Comparative toxicity of 2,3, 7,8-tetrachlorodibenzo-p-dioxin (TCDD) in four (sub) strains of adult male rats. Toxicol Appl Pharmacol 77: 490-495 https://doi.org/10.1016/0041-008X(85)90189-9
  38. Roth WL, Ernst S, Weber LWD, Kerecsen L, Rozman KK. 1994. A pharmaco dynamically responsive model of 2,3, 7,8-tetrachlorodibenzo-p-dioxin (TCDD) transfer liver and fat at low and high doses. Toxicol Appl Pharmacol 127: 151-162. https://doi.org/10.1006/taap.1994.1149
  39. Ryu BH. 1992. Antitumor and immunologic activity of chitosan extracted from shell of shrimp. J Korean Soc Food Nutr 21: 154-162.
  40. Lee GM, Son BK. 1998. Effects of chitosan of different molecular weights on lipid metabolism in rats. Korean J Nutrition 31: 143-152.
  41. Hwang SY. 1999. Protective effects of Panax ginseng on TCDD-induced toxicity in male Guinea pig. PhD Dissertation. Hannam University, Daejeon, Korea.
  42. Lim BO, Yamada K, Nonaka M, Kuramoto Y, Hung P, Sugano M. 1997. Dietary fibers modulate indices of intestinal immune function in rats. J Nutr 127: 663-667.

Cited by

  1. Effects of Artemisia capillaris extract on disorders of hepatic functions and lipid metabolism in rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) vol.46, pp.3, 2013, https://doi.org/10.4163/jnh.2013.46.3.207