DOI QR코드

DOI QR Code

Effects of Chambirum on Radical Scavenging Activity and Serum Lipid Levels in Rats Fed Cholesterol

참비름의 라디칼 소거활성 및 콜레스테롤 급이 흰쥐에 대한 혈액 지질성분에 미치는 영향

  • Hwang, Cho-Rong (Dept. of Food Science and Nutrition, Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Lee, Soo-Jung (Dept. of Food Science and Nutrition, Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Ryu, Ji-Hyeon (Dept. of Food Science and Nutrition, Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Kang, Jae-Ran (Dept. of Food Science and Nutrition, Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Kang, Shin-Kwon (Dept. of Food Medicinal, International University of Korea) ;
  • Sung, Nak-Ju (Dept. of Food Science and Nutrition, Institute of Agriculture and Life Sciences, Gyeongsang National University)
  • 황초롱 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 이수정 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 류지현 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 강재란 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 강신권 (한국국제대학교 식품의약학과) ;
  • 성낙주 (경상대학교 식품영양학과.농업생명과학연구원)
  • Received : 2011.12.30
  • Accepted : 2012.02.16
  • Published : 2012.04.30

Abstract

To evaluate of biological activity of Chambirum ($Amaranthus$ $lividus$) $in$ $vitro$ and $in$ $vivo$, we investigated the free radical scavenging activity of its extracts $in$ $vitro$ and the effect of lyophilized powder on the serum lipid profile of rats fed cholesterol. ABTS, DPPH, and NO radical scavenging activities were tested from water and 80% ethanol extracts of Chambirum, and biological activities of the ethanol extracts were significantly higher than the water extracts. The total lipid and total cholesterol content of serum, atherogenic index (AI), and cardiac risk factor (CRF) were decreased significantly for the groups fed with a 5% and 10% supplement of Chambirum powder (HCA1 and HCA2) in comparison with the group fed cholesterol (HC). Triglyceride content decreased drastically in the HCA2 group, while its content was not decreased in the other group. HDL-cholesterol content was elevated in the HCA1 and HCA2 groups, but was not significantly different to the supplemented amount of Chambirum powder. GPT and ${\gamma}$-GTP activities were decreased significantly in the groups fed with Chambirum powder compared to the HC group. And the content of the lipid peroxide level was the same trend. Therefore, these results give evidence that Chambirum might be useful in the control of induced disorders by dietary cholesterol and/or lipids.

참비름의 $in$ $vitro$ 라디칼 소거활성 및 콜레스테롤 급이 흰쥐에 보충 급이할 경우 혈액 중 지질 성분의 함량에 미치는 영향을 분석하였다. 참비름 물 및 80% 에탄올 추출물의 ABTS, DPPH 및 nitric oxide 라디칼 소거활성은 물 추출물보다 에탄올 추출물에서 유의적으로 높았다. 콜레스테롤을 급이한 대조군에 비해 5%(HCA1) 및 10%(HCA2)의 참비름 분말 급이 시 혈청 총 지질, 총 콜레스테롤 함량, 동맥경화지수 및 심혈관질환 위험지수는 시료의 첨가량이 증가됨에 따라 유의적으로 감소하였다. 중성지방은 HCA2군에서만 유의적인 감소를 보였으며, HDL-콜레스테롤은 대조군에 비해 참비름 분말 급이 시 증가하였으나, 첨가량에 따른 유의차는 없었다. 혈중 GPT 및 ${\gamma}$-GTP 활성은 대조군에 비하여 참비름 분말 급이군에서 유의적으로 감소하였다. 혈중 지질과산화물 함량도 같은 경향이었다. 따라서 참비름은 식이성 콜레스테롤에 의한 질환의 조절에 유효할 것으로 생각된다.

Keywords

References

  1. Wu JH, Kao JT, Wen MS, Wu D. 1993. Coronary artery disease risk predicted by plasma concentrations of highdensity lipoprotein cholesterol, apolipoprotein AI, apolipoprotein B, and lipoprotein(a) in a general Chinese population. Clin Chem 39: 209-215.
  2. Mantha SV, Kalra J, Prasad K. 1996. Effects of probucol on hypercholesterolemia-induced changes in antioxidant enzymes. Life Sci 58: 503-509. https://doi.org/10.1016/0024-3205(95)02315-1
  3. Kwak CS, Kim MY, Lee MS. 2005. Antioxidant effect of plant food mixtures in rat fed on high fat-high cholesterol diet. Korean J Nutr 38: 352-363.
  4. Glowinska B, Urban M, Koput A. 2002. Cardiovascular risk factors in children with obesity, hypertension an diabetes: lipoprotein(a) levels and body mass index correlate with family history of cardiovascular disease. Eur J Pediatr 161: 511-518. https://doi.org/10.1007/s00431-002-1040-7
  5. Kim AJ, Kim SY, Choi MK, Kim MH, Han MR, Chung KS. 2005. Effects of mulberry leaves powder on lipid metabolism in high cholesterol-fed rats. Korean J Food Sci Technol 37: 636-641.
  6. Lee SJ, Shin JH, Kang MJ, Kim MJ, Kim SH, Sung NJ. 2011. Effects of Portulaca oleracea on the lipid levels of rats fed a hypercholesterolemia inducing diet. J Food Sci Nutr 16: 202-209. https://doi.org/10.3746/jfn.2011.16.3.202
  7. Shin MK, Kim DH, Han SH. 2003. Effects of dried tea leaf powder of serum on lipid concentrations in rats fed high fat. Korean J Food Culture 18: 226-234.
  8. Gupta M, Mazumdar UK, Gomathi P, Kumar RS. 2004. Antioxidant and free radical scavenging activities of Ervatamia coronaria Stapf. leaves. Iran J Pharm Res 2: 119-126.
  9. Russell DW, Setchell FDR. 1992. Bile acid biosynthesis. Biochem 31: 4737-4749. https://doi.org/10.1021/bi00135a001
  10. Oh YS, Lee SH. 2005. Isolation and identification of antimicrobial compound from Amarantus lividus. J Korean Microbiol Biotechnol 33: 123-129.
  11. Fasuyi AO. 2007. Bio-nutritional evaluations of three tropical leaf vegetables (Telfairia occidentalis, Amaranthus cruentus and Talinum triangulare ) as sole dietary protein sources in rat assay. Food Chem 103: 757-765. https://doi.org/10.1016/j.foodchem.2006.09.030
  12. Pacifico S, Abrosca B, Golino A, Mastellone C, Piccolella S, Fiorentino A, Monaco P. 2008. Antioxidant evaluation of polyhydroxylated nerolidols from redroot pigweed (Amaranthus retroflexus) leaves. Food Sci Technol-LEB 41: 1665-1671. https://doi.org/10.1016/j.lwt.2007.10.006
  13. Holmberg D. 1978. The effect of amaranth treatment on some kidney and liver enzymes in the rat. Toxicol Appl Pharm 46: 257-260. https://doi.org/10.1016/0041-008X(78)90156-4
  14. Ashok Kumar BS, Lakshman K, Nandeesh R, Arun Kumar PA, Manoj B, Kumar V, Sheshadri Shekar D. 2011. In vitro alpha-amylase inhibition and in vivo antioxidant potential of Amaranthus spinosus in alloxan-induced oxidative stress in diabetic rats. Saudi J Biol Sci 18: 1-5. https://doi.org/10.1016/j.sjbs.2010.08.002
  15. Kim HK, Kim MJ, Cho HY, Kim EK, Shin DH. 2006. Antioxidative anti-diabetic effects of amaranth (Amarnthus esculantus) in streptozotocin-induced diabetic rats. Cell Biochem Funct 24: 195-199. https://doi.org/10.1002/cbf.1210
  16. Sangameswaran B, Jayakar B. 2008. Anti-diabetic, antihyperlipidemic and spermatogenic effects of Amaranthus spinosus Linn. on streptozotocin-induced diabetic rats. J Natural Med 62: 79-82.
  17. Grageta H. 1999. Effect of amaranth and oat bran on blood serum and liver lipids in rats depending on the kind of dietary fats. Nahrung 43: 114-117. https://doi.org/10.1002/(SICI)1521-3803(19990301)43:2<114::AID-FOOD114>3.0.CO;2-#
  18. Plate Andrea YA, Arėas Jose AG. 2002. Cholesterol-lowering effect of extruded amaranth (Amaranthus caudatus L.) in hypercholesterolemic rabbits. Food Chem 76: 1-6. https://doi.org/10.1016/S0308-8146(01)00238-2
  19. Cho KJ, Yi SI, Kim YT, Hwang YS. 1995. Purification and characterization of antiviral protein (AAP29) from the leaves of Amaranthus mangostanus. Agric Chem Biotechnol 38: 528-533.
  20. Re R, Pellegrini N, Pannala A, Yang M, Rice EC. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  22. Song HS, Moon KY. 2006. In vivo antioxidant activity profiles of ${\beta}$-glucans isolated from yeast Saccharomyces cerevisiae and mutant Saccharomyces cerevisiae IS2. Food Sci Biotechnol 15: 437-440.
  23. Frings CS, Frendley TW, Dunn RT, Queen CA. 1972. Improved determination of total serum lipids by the sulfophospho- vanillin reaction. Clin Chem 18: 763-764.
  24. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  25. Cheung PCK. 1998. Plasma and hepatic cholesterol levels and fecal neutral sterol excretion are altered in hamsters fed straw mushroom diets. J Nutr 128: 1512-1516.
  26. Haglund O, Loustarinen R, Wallin R, Wibell I, Saldeen T. 1991. The effect of oil on triglycerides, cholesterol, fibrinogen and malondialdehyde in man supplemented with vitamin. Eur J Nutr 121: 165-172.
  27. Kang SM, Shim JY, Hwang SJ, Hong SG, Jang HE, Park MH. 2003. Effects of Saengshik supplementation on health improvement in diet-induced hypercholesterolemic rats. J Korean Soc Food Sci Nutr 32: 906-912. https://doi.org/10.3746/jkfn.2003.32.6.906
  28. Yagi K. 1984. Assay for blood plasma or serum. In Method in Enzymology. Packer L, ed. Academic Press, New York, NY, USA. Vol 105, p 328-331.
  29. Lee SJ, Hwang CH, Kim MJ, Seo JK, Sung NJ. 2010. Biological activities of extracts from Bireum (Amaranthus lividus). Abstract No 188 (P 2-35) presented at 51th Journal of Life Science. Kyungnam University of Science and Technology, Jinju, Korea.
  30. Ozsoy N, Yilmaz T, Kurt O, Can A, Yanardag R. 2009. In vitro antioxidant activity of Amaranthus lividus L. Food Chem 116: 867-872. https://doi.org/10.1016/j.foodchem.2009.03.036
  31. Repo-Carrasco-Valencia R, Peña J, Kallio H, Salminen S. 2009. Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). J Cereal Sci 49: 219-224. https://doi.org/10.1016/j.jcs.2008.10.003
  32. Shin JH. 2002. The formation and inhibition of N-nitrosamine in common Korean foods. PhD Dissertation. Gyeongsang National University, Jinju, Korea. p 159.
  33. Kim MJ, Lee SJ, Kim RJ, Jeong BY, Sung NJ. 2011. Mineral content and antioxidants activity of Portulaca oleracea. J Life Sci 21: 1393-1400. https://doi.org/10.5352/JLS.2011.21.10.1393
  34. Czerwiski J, Bartnikowska E, Leontowicz H, Lange E, Leontowicz M, Katrich E, Trakhtenberg S, Gorinstein S. 2004. Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. J Nutr Biochem 15: 622-629. https://doi.org/10.1016/j.jnutbio.2004.06.002
  35. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342: 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  36. Hwang EK. 2009. Effect of quercetin supplement on major biochemical parameters in sera of rats fed high fat and high cholesterol diet. J Vet Clin 26: 413-418.
  37. Kim YH. 2000. Isolation on rutin from Amaranthus mangostanus. Kor J Pharmacogn 31: 249-251.
  38. Park HS, Yang KM, Jung JW. 2009. Effect of water extract from Hordeum vulgare L. with medicinal herb on plasma lipid status and glucose in rats fed high fat diet. Kor J Herbology 24: 15-21.
  39. Hwang EK. 2009. Effect of naringin on major biochemical parameters in sera of rats fed high fat and cholesterol diet. J Vet Clin 26: 231-237.
  40. Zeashan H, Amresh G, Singh S, Rao CV. 2009. Hepatoprotective and antioxidant activity of Amaranthus spinosus against CCl4 induced toxicity. J Ethnopharmacol 125: 364-366. https://doi.org/10.1016/j.jep.2009.05.010
  41. Ohkawa H, Ohishi N, Yake K. 1979. Assay for lipid peroxides in animal tissues by thiobabituric acid reaction. Anal Biochem 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  42. Lee JJ, Kim AR, Lee H, Kim CH, Chang HC, Lee MY. 2010. Effects of powders of soybean and Doenjang on cholesterol level and antioxidant activities in rats fed with a high cholesterol diet. J Life Sci 20: 1134-1142. https://doi.org/10.5352/JLS.2010.20.7.1134
  43. Cha JY, Kim HJ, Cho YS. 2000. Effects of water-soluble extract from leaves of Morus alba and Cudrania tricuspidata on the lipid peroxidation in tissues of rats. J Korean Soc Food Sci Nutr 29: 531-536.
  44. Sexena R, Venkaiah K, Anitha P, Venu L, Raghunath M. 2007. Antioxidant activity of commonly consumed plant foods of India: contribution of their phenolic content. Int J Food Sci Nutr 58: 250-260. https://doi.org/10.1080/09637480601121953

Cited by

  1. Effects of Garlic Shoot Extract on Lipid Metabolism in Hyperlipidemic Rats Fed a High-fat Diet vol.25, pp.3, 2015, https://doi.org/10.5352/JLS.2015.25.3.276