DOI QR코드

DOI QR Code

Effect of Hog Millet Supplementation on Hepatic Steatosis and Insulin Resistance in Mice Fed a High-fat Diet

고지방식이로 유도한 지방간 마우스에서 기장 첨가식이가 지방간 및 인슐린 저항성에 미치는 영향

  • Park, Mi-Young (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jang, Hwan-Hee (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Jin-Young (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Young-Min (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jae-Hyun (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Jae-Hak (College of Veterinary Medicine, Seoul National University) ;
  • Park, Dong-Sik (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration)
  • 박미영 (국립농업과학원 농식품자원부 기능성식품과) ;
  • 장환희 (국립농업과학원 농식품자원부 기능성식품과) ;
  • 이진영 (국립농업과학원 농식품자원부 기능성식품과) ;
  • 이영민 (국립농업과학원 농식품자원부 기능성식품과) ;
  • 김재현 (국립농업과학원 농식품자원부 기능성식품과) ;
  • 박재학 (서울대학교 수의과대학) ;
  • 박동식 (국립농업과학원 농식품자원부 기능성식품과)
  • Received : 2012.01.16
  • Accepted : 2012.03.22
  • Published : 2012.04.30

Abstract

The dietary intake of whole grains is known to reduce the incidence of chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. In our previous study, hog millet (HM, $Panicum$ $miliaceum$ L.) water extract showed the highest anti-lipogenic activity among nine cereal types in 3T3-L1 cells. In this study, the effect of hog millet water extract on hepatic steatosis and lipid metabolism in mice fed a high fat diet was investigated. Mice were fed a normal-fat diet (ND), high-fat diet (HFD) or HFD containing 1% or 2% (w/w) HM for 7 weeks. Body weight and food intake were monitored during the study period. Insulin resistance by homeostasis model assessment (HOMA-IR), fasting lipid profile, hepatic fatty acid metabolism-related gene expression determined, and intraperitoneal glucose tolerance test (IGTT) were performed at the study's end. The results indicated that 1% and 2% HM diets effectively decreased liver weights, blood TG and T-cholesterol levels (p<0.05), while the HDL-cholesterol level was increased (p<0.05) compared to HFD-induced steatotsis mice. Hepatic lipogenic-related gene ($PPAR{\alpha}$, L-FABP, and SCD1) expressions decreased, whereas lipolysis- related gene (CPT1) expression increased in animals fed the 2% PME diet (p<0.05). In addition, mice fed 1% or 2% HM diet had markedly decreased IGTT and HOMA-IR, compared to the those of the HFD-induced hepatic steatosis control group (p<0.05). These results indicated that HM inhibited hepatic lipid accumulation by regulating fatty acid metabolism, and suggested that HM is useful in the chemoprevention or treatment of high fat-induced hepatic steatosis and hepatic steatosis-related disorders including hyperlipidemia, glucose sensitivity, and insulin resistance.

비알코올성 지방간은 인슐린저항성을 근간으로 하는 대사증후군의 원인으로 생각되고 있으며 최근 그 발병율이 증가하고 있다. 본 연구진은 기장 열수추출물을 식이에 첨가하여 고지방식에 의해 인위적으로 지방간을 유도한 마우스에게 섭취시킨 후 혈청 내 생물학적 수치와 간조직 검사를 통하여 비알코올성 지방간 억제 효과를 검토하였다. 그 결과, 식이섭취량은 차이가 없었으나 간조직 무게가 1% 및 2% 기장 열수추출물 첨가식이군에서 유의적으로 감소하였고(p<0.05) 간조직 내 지방 축적이 유의적으로 감소하였음을 확인하였다. 또한 기장 열수추출물 첨가식이군의 경우 고지방식 대조군에 비해 혈청 중성지방 및 총 콜레스테롤이 감소하였고(p<0.05), HDL과 HDL-/총 콜레스테롤의 비율이 유의적으로 증가하여(p<0.05) 혈액의 지질 조성이 개선되었음을 알 수 있었다. HOMA-IR 및 포도당 내성 검사 결과 2% 기장 열수추출물 첨가군의 경우 이들 모두 유의적으로 감소하여 고지방식에 의한 인슐린 저항성 및 당흡수 부전을 기장 열수추출물이 완화시켰다(p<0.05). 한편 간조직에서 지방산 대사와 관련된 인자들의 유전자 발현을 측정한 결과 지방산 합성에 관여하는 L-FABP와 SCD1은 2% 기장 열수추출물 섭취군에서 유의적으로 감소하였고(p<0.05) 지방산 산화와 관련된 $PPAR{\alpha}$는 1% 및 2% 기장 열수추출물 섭취군에서 모두 유의적으로 증가하였다(p<0.05). 이상의 혈청 및 조직의 생물학적 수치와 간조직 검사 결과를 미루어 볼 때 기장 열수추출물 첨가 식이는 고지방식이에 의해 유도된 마우스의 비알코올성 지방간 치유 혹은 예방에 긍정적으로 기여할 수 있음을 시사해 준다.

Keywords

References

  1. Park SH, Jeon WK, Kim SH, Kim HJ, Park DI, Cho YK, Sung IK, Sohn CI, Keum DK, Kim BI. 2006. Prevalence and risk factors of non-alcoholic fatty liver disease among Korean adults. J Gastroenterol Hepatol 21: 138-143. https://doi.org/10.1111/j.1440-1746.2005.04086.x
  2. Asselah T, Rubbia-Brandt L, Marcellin P, Negro F. 2006. Steatosis in chronic hepatitis C: why does it really matter? Gut 55: 123-130. https://doi.org/10.1136/gut.2005.069757
  3. Jun DW. 2011. Non-alcoholic fatty liver disease. Korean J Hepatol 17: S332-S336.
  4. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M. 2003. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37: 917-923. https://doi.org/10.1053/jhep.2003.50161
  5. Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, Natale S, Forlani G, Melchionda N. 2001. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50: 1844-1850. https://doi.org/10.2337/diabetes.50.8.1844
  6. Seppala-Lindroos A, Vehkavaara S, Häkkinen AM, Goto T, Westerbacka J, Sovijarvi A, Halavaara J, Yki-Jarvinen H. 2002. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87: 3023-3028. https://doi.org/10.1210/jc.87.7.3023
  7. Park MY, Seo DW, Lee JY, Sung MK, Lee YM, Jang HH, Choi HY, Kim JH, Park DS. 2011. Effects of Panicum miliaceum L. extract on adipogenic transcription factors and fatty acid accumulation in 3T3-L1 adipocytes. Nutr Res Pract 5: 192-197. https://doi.org/10.4162/nrp.2011.5.3.192
  8. Kwak CS, Lim SJ, Kim SA, Park SC, Lee MS. 2004. Antioxidative and antimutagenic effects of Korean buckwheat, sorghum, millet and Job's tears. J Korean Soc Food Sci Nutr 33: 921-929. https://doi.org/10.3746/jkfn.2004.33.6.921
  9. Reeves PG, Nielsen FH, Fahey GC Jr. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-1951.
  10. Park MY, Jang HH, Kim JB, Yoon HN, Lee JY, Lee YM, Kim JH, Park DS. 2011. Hog millet (Panicum miliaceum L.)-supplemented diet ameliorates hyperlipidemia and hepatic lipid accumulation in C57BL/6J-ob/ob mice. Nutr Res Pract 5: 511-519. https://doi.org/10.4162/nrp.2011.5.6.511
  11. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander- Tetri BA, Bacon BR. 1999. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94: 2467-2474. https://doi.org/10.1111/j.1572-0241.1999.01377.x
  12. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  13. Macotela Y, Emanuelli B, Bang AM, Espinoza DO, Boucher J, Beebe K, Gall W, Kahn CR. 2011. Dietary leucine--an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One 6: e21187. https://doi.org/10.1371/journal.pone.0021187
  14. Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas- Ballina M, Valdes-Ferrer SI, Olofsson PS, Harris YT, Roth J, Chavan S, Tracey KJ, Pavlov VA. 2011. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol Med 17: 599-606. https://doi.org/10.1007/s00894-010-0758-9
  15. Yasutake K, Nakamuta M, Shima Y, Ohyama A, Masuda K, Haruta N, Fujino T, Aoyagi Y, Fukuizumi K, Yoshimoto T, Takemoto R, Miyahara T, Harada N, Hayata F, Nakashima M, Enjoji M. 2009. Nutritional investigation of nonobese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol 44: 471-477. https://doi.org/10.1080/00365520802588133
  16. Nakamuta M, Kohjima M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Yada M, Yada R, Takemoto R, Fukuizumi K, Harada N, Taketomi A, Maehara Y, Nakashima M, Enjoji M. 2008. The significance of differences in fatty acid metabolism between obese and non-obese patients with non-alcoholic fatty liver disease. Int J Mol Med 22: 663-667.
  17. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J, Sovijärvi A, Halavaara J, Yki-Järvinen H. 2002. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87: 3023-3028. https://doi.org/10.1210/jc.87.7.3023
  18. Struben VM, Hespenheide EE, Caldwell SH. 2000. Nonalcoholic steatohepatitis and cryptogenic cirrhosis within kindreds. Am J Med 108: 9-13.
  19. Mather KJ, Hunt AE, Steinberg HO, Paradisi G, Hook G, Katz A, Quon MJ, Baron AD. 2001. Repeatability characteristics of simple indices of insulin resistance: implications for research applications. J Clin Endocrinol Metab 86: 5457-5464. https://doi.org/10.1210/jc.86.11.5457
  20. Smith BW, Adams LA. 2011. Non-alcoholic fatty liver disease. Crit Rev Clin Lab Sci 48: 97-113. https://doi.org/10.3109/10408363.2011.596521
  21. Ma T, Liaset B, Hao Q, Petersen RK, Fjaere E, Ngo HT, Lillefosse HH, Ringholm S, Sonne SB, Treebak JT, Pilegaard H, Froyland L, Kristiansen K, Madsen L. 2011. Sucrose counteracts the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice. PLoS One 6: e21647. https://doi.org/10.1371/journal.pone.0021647
  22. von Eynatten M, Baumann M, Heemann U, Zdunek D, Hess G, Nawroth PP, Bierhaus A, Humpert PM. 2010. Urinary L-FABP and anaemia: distinct roles of urinary markers in type 2 diabetes. Eur J Clin Invest 40: 95-102. https://doi.org/10.1111/j.1365-2362.2009.02220.x
  23. Ntambi JM. 1999. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40: 1549-1558.
  24. Lapsys NM, Kriketos AD, Lim-Fraser M, Poynten AM, Lowy A, Furler SM, Chisholm DJ, Cooney GJ. 2000. Expression of genes involved in lipid metabolism correlate with peroxisome proliferator-activated receptor gamma expression in human skeletal muscle. J Clin Endocrinol Metab 85: 4293-4297. https://doi.org/10.1210/jc.85.11.4293
  25. McGarry JD, Brown NF. 1997. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 15: 1-14.

Cited by

  1. Triglyceride Control Effect of Agrimonia eupatoria L. in Oleic Acid Induced NAFLD-HepG2 Model vol.28, pp.5, 2015, https://doi.org/10.7732/kjpr.2015.28.5.635
  2. Anti-Lipogenic Effect of Functional Cereal Samples on High Sucrose Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.789
  3. Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies vol.74, pp.03, 2015, https://doi.org/10.1017/S0029665115002104
  4. Repressive effects of red bean, Phaseolus angularis, extracts on obesity of mouse induced with high-fat diet via downregulation of adipocyte differentiation and modulating lipid metabolism pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0421-2