
논리 프로그래밍을 위한 for-loop 구문 69

논리 프로그래밍을 위한 for-loop 구문

권 기 항†․하 홍 표††

요 약

고전 논리나 선형 논리에 기반한 논리 프로그래밍에서는 순차적 작업이나 순차적 순환 작업을 표현하는 구문이 결여되어 있다. 최근 순차

적 작업을 표현하는 구문 - G1 ∩ G2 이 제시되었는데 이는 Japaridze의 game 모델에 기반을 두고 있다. 본 논문에서는 ∩
 G 의 형태를 갖

고 있는 순차적 순환 작업을 제안하고 있다. 여기서 x는 변수이고, L은 리스트이고, G는 목표작업을 의미한다. 기호 ∩
는 순차적 유한 정량자

라고 불린다.

위 구문을 다음과 같은 작업을 의미한다: x에 L의 원소들의 값을 차례로 대입하여 순차적으로 반복 수행하시오.

키워드 : For-loop, Sequentiality, Iteration, Bounded Quantifier, Computability Logic

For-loop for Logic Programming

KeeHang, Kwon†․Hong Pyo, Ha††

ABSTRACT

Logic programming based on classical or linear logic has traditionally lacked devices for expressing sequential tasks and sequential

iterative tasks. Expressing sequential goal tasks has been addressed by a recent proposal of sequential goals of the form G1 ∩ G2 which

is based on the game semantics of Japaridze.

This paper proposes sequential iterative goal formulas of the form ∩
 G where G is a goal, x is a variable, and L is a list. ∩

 is

called a sequential bounded quantier. These goals allow us to specify the following task: sequentially iterate G with x ranging over all the

elements of L.

Keywords : For-loop, Sequentiality, Iteration, Bounded Quantifier, Computability Logic

1. Introduction1)

Logic programming based on classical or linear logic

has traditionally lacked mechanisms that permit some

tasks to be (1) sequentially executed and (2) sequentially

iterated.

These two deficiencies are an outcome of using a

weak logic as the basis for logic programming. Lacking

sequential conjunctive goals, logic programming such as

Prolog has been relying on adopting SLD-like resolution

as a proof procedure. The SLD-like resolution simulates

sequential goals by sequentially processing parallel-

conjunctive goals.

※ This paper was supported by the Dong-A University Research Fund.
†정 회 원:동아대학교 컴퓨터공학과 교수
††준 회 원:서강대학교 컴퓨터공학과 석사과정
논문접수: 2011년 12월 12일
심사완료: 2012년 1월 11일

This approach is, however, unsatisfactory because

declarative meanings of the resulting programs tend to be

awkward to formulate lacking looping constructs, logic

programming relies on recursion to perform iterative goal

tasks. One of the disadvantages of this approach is that

simple goal tasks have unnecessarily complex solutions in

which recursion are used, when a simpler solution using

iteration exists. The latter is easier to write and

understand, and is closer to the original specification.

Also, iteration can be implemented more efficiently than

recursion.

To deal with the first deficiency, attention has been

given to adding sequential goals on top of

parallel-conjunctive goals to logic programming [6]. A

sequential goal is of the form G1 ∩ G2 where G1, G2 are

goals. Executing this goal has the following intended

semantics: solve G1 and G2 sequentially.

http://dx.doi.org/10.3745/KIPSTA.2012.19A.1.069

70 정보처리학회논문지 A 제19-A권 제1호(2012. 2)

Both executions must succeed for executing G1 ∩ G2

to succeed. This logic is built on the recent notion on the

logic of task [3] and has the advantage that a

well-defined declarative meaning can be obtained. This is

in contrast to other approaches [1, 2] based on classical

logic where no well-defined declarative meaning of

sequentiality can be found.

To deal with the second deficiency, our approach in

this paper involves the direct enrichment of the

underlying logic in [6] to allow for sequential iterative

goals. A sequential iterative goal is of the form ∩
G

where G is a goal, x is a variable, and L is a list.

Executing this goal has the following intended semantics:

iterate G with X ranging over all elements of the list L.

All executions must succeed for executing ∩
G to

succeed.

An illustration of this facet is provided by the

following definition of the relation which sequentially

writes all the elements in a list:

write list(L) : - write("List : ") ∩ (∩
write(X)):

which replaces the tedious logic program

(with no declarative semantics for commas ingoals)

shown below:

write list(L) : - write("List : "),

write list1(L).

write list1([]).

write list1([X | T]) : - write(X),

write list1(T):

The body of the new definition above contains a

sequential conjunction, denoted by∩ and an iterative goal.

As a particular example, solving the query write_

list([1,2,3]) would result in solving the goal ∩
 after

writing List :. The given goal will succeed after writing

1, 2, 3 in sequence.

As seen from the example above, sequential iterative

goals can be used to perform looping tasks. This paper

proposes Prologloop, an extension of Prolog with sequential

iterative operators in goal formulas.

As mentioned earlier, we also adopt sequential

conjunctive goals, introduced in [6], which are of the

form G1 ∩ G2 where G1, G2 are goals. Executing this

goal has the following intended semantics: execute both

G1 and G2 in sequence. Both executions must succeed for

executing G1 ∩ G2 to succeed.

In this paper we present the syntax and semantics of

this extended language, show some examples of its use.

The remainder of this paper is structured as follows.

We describe Prologloop based on a first-order sequential

Horn clauses in the next section. In Section 3, we present

some examples of SProlog.Section 4 concludes the paper.

2. The Language

The language is a version of Horn clauses with

sequential iterative goals. It is described by G- and

D-formulas given by the syntax rules below:

G::= A | G ∧ G | ∃ x G | G ∩ G | G

D::= A | G ⊃ A | ∀xD | D ∧ D

In the rules above, x represents a variable, L

represents a list of terms, and A represents an atomic

formula. A D-formula is called a sequential Horn clause

with sequential iterative goals.

In the transition system to be considered, G-formulas

will function as queries and a set of D-formulas will

constitute a set of instructions. For this reason, we refer

to a G-formula as a query, to a set of D-formula as an

instruction set.

We will present an operational semantics for this

language as inference rules. To be specific, we encode

such inference rules as theories in the (higher-order)

logic of task, i.e., a simple variant of Computability Logic

[3]. Below the expression A sand B denotes a sequential

conjunction of the task A and the task B and the

expression A pand B denotes a parallel conjunction of the

task A and the task B.

These rules in fact depend on the top-level constructor

in the expression, a property known as uniform

provability [7, 8].

Definition 1. Let G be a goal and let P be a finite set
of instructions. Then the notion of executing <P, G>
executing G relative to P is defined as follows:
(1) exec(P, A) if A is identical to an instance of a

program clause in P.
(2) exec(P, A) if (an instance of a program clause in P

is of the form G1 ⊃ A) pand exec(P, G1).
(3) exec(P, G1 ∧ G2) if exec(P, G1) pand
exec(P, G2). Thus, the two goal tasks must be done in

parallel and both tasks must succeed for the current task

to succeed.

(4) exec(P, ∃xG1) if (select the true term t) sand

논리 프로그래밍을 위한 for-loop 구문 71

exec(P, [t/X]G1). Typically, selecting the true term can be
achieved via the unification process.

(5) exec(P, G1 ∩ G2) if exec(P, G1) sand exec(P, G2).
Thus, the two goal tasks must be done in sequence

and both tasks must succeed for the current task to

succeed.

(6) exec(P, ∩ xn ilG). The current execution terminates
with a success.

(7) exec(P, ∩ xa an G) if exec(P, [a1/x]G) sand exec
(P, ∩ xa an G).

In the above rules, the ∩
 provides iterations: they

allow for the repeated sequential conjunctive execution of

the instructions.

An alternative yet tedious way to giving semantics of

our language is by transformation to plain logic

programming. For example, our loop construct ∩
 can

be defined by introducing a recursive auxiliary predicate

such as write_list1 in Section 1. This method is discussed

in detail in [2].

While the operational notion of execution defined above

is intuitive enough and is quite similar to imperative

languages, it is interesting to ask what its declarative

meaning is. Clearly, sequential goals cannot be handled in

classical logic or linear logic. Fortunately, this limitation

can be overcome by a new declarative semantics for

logical formulas, i.e., using Japaridze's Computability

Logic(CL)[3, 4, 5]. CL is a new semantic platform for

reinterpreting logic as a theory of tasks. Formulas in CL

stand for instructions that can carry out some tasks.

Proving the soundness and completeness of our proof

procedure with respect to CL is currently under way.

3. Example

An example is provided by the following the “factorial”

program.

fact(0, 1): % base case

fact(X + 1, XY + Y) : - fact(X, Y).

Our language in Section 2 permits iterative goals. An

example of this construct is provided by the program

which does the following sequential tasks: output 10!, 11!,

12!,13!

sequentially:

query1 : ∩
 % for i = 10 to 13 begin

(fact(N, O) ∩

write(N) ∩write(‘factorial:’) ∩

write(O)) % for end

For example, consider a goal query1. Solving this goal

has the effect of executing query1 with respect to the

factorial program for four times.

Our language in Section 2 permits variables to appear

in the list in iterative goals. These variables can be used

only for controlling iteration and must be instantiated at

run-time. An example of this construct is provided by

the program which does the following sequential tasks:

read a number N from the user, and then repeatedly

output the factorials of the numbers from 1 to N.

query2 :.

(read(N) ∩
% for x=1 to N begin (fact(X, O) ∩

write(X) ∩ write(‘factorial is :’) ∩ write(O)) % for end

In the above, note that [1..N] is a shorthand notation

for [1,2,…,N].

4. Conclusion

In this paper, we have considered an extension to logic

programming with sequential iterations in goals. This

extension allows goals of the form ∩
G where G is a

goal, X is a variable and L is a list of terms. These goals

are particularly useful for the bounded looping executions

of instructions, making logic programming more concise,

more readable, and more friendly to imperative

programmers.

Although sequential iterative goals do provide a

significant gain in expressive elegance, some tasks with

dynamic termination conditions cannot be expressed at all

using them.

We plan to look at some variations [2] such as the

fromto statements in the future to improve expressibility.

Regarding implementing our language, the handling of

sequential bounded quantifications does not pose any

major complications. The treatment of a goal of the form

G1 ∩ G2 that is indicated by the operational semantics

essentially requires G1 and G2 to be processed

sequentially, as is done in most Prolog implementations.

Reference

[1] K. Apt, “Arrays, bounded quantification and iteration in logic

72 정보처리학회논문지 A 제19-A권 제1호(2012. 2)

and constraint logic programming”, Science of Computer

Programming, Vol.26, pp.133-148, 1996.

[2] J. Schimpf, “Logical loops”, ICLP, pp.224-238, 2002.

[3] G. Japaridze, “Introduction to computability logic”, Annals of

Pure and Applied Logic, Vol.123, pp.1-99, 2003.

[4] G. Japaridze, “Sequential operators in computability logic”,

Information and Computation, Vol.206, No.12, pp.1443-1475,

2008.

[5] G. Japaridze, “A new face of the branching recurrence of

computability logic”, Applied Mathematics Letters (to appear).

[6] K. Kwon and S. Hur, “Adding sequential conjunctions to

Prolog”, IJCTA, Vol.1, No.1, pp.1-3, 2010.

[7] D. Miller, “A logical analysis of modules in logic

programming”, Journal of Logic Programming, Vol.6,

pp.79-108, 1989.

[8] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov, “Uniform

proofs as a foundation for logic programming”, Annals of Pure

and Applied Logic, Vol.51, pp.125-157, 1991.

권 기 항

e-mail : khkwon@dau.ac.kr

1983년 3월 서울대학교 컴퓨터공학과

(공학사)

1985년 9월 Georgia Tech Computer

Science (공학석사)

1994년 12월 Duke University Computer

Science(공학박사)

1995년 9월～현 재 동아대학교 컴퓨터공학과 교수

관심분야 :소프트웨어공학, computability logic

하 홍 표

e-mail : hompoyo@hotmail.com

2011년 2월 동아대학교 컴퓨터공학과

(공학사)

현 재 서강대학교 컴퓨터공학과 석사과정

관심분야 :소프트웨어공학, computability

logic, Software Modeling,

Software Quality Assurance

