DOI QR코드

DOI QR Code

Non-thermal effects of microwaves and kinetics on the transesterification of soybean oil

  • Hsiao, Ming-Chien (Department of Environmental Engineering, Kun Shan University) ;
  • Liao, Pei-Hung (Department of Environmental Engineering, Kun Shan University) ;
  • Chang, Li-Wen (Department of Materials Engineering, Kun Shan University)
  • Received : 2012.06.25
  • Accepted : 2012.08.14
  • Published : 2012.09.25

Abstract

A kinetic study of the transesterification of soybean oil was conducted using microwaves under various temperatures, power densities, and reaction times. Results show that power density affects the kinetics and yield. The biodiesel yield increased with increasing microwave power density. The non-thermal effects of microwave irradiation on transesterification reactions were evaluated at a constant reaction temperature ($65^{\circ}C$) and power density (0.204 $Wg^{-1}$). Microwave irradiation was found to increase the reaction rates by 3.52-7.06 fold.

Keywords

References

  1. Azcan, N. and Danisman, A. (2007), "Alkali catalyzed transesterification of cottonseed oil by microwave irradiation", Fuel, 86(17-18), 2639-2644. https://doi.org/10.1016/j.fuel.2007.05.021
  2. Barnard, T.M., Leadbeater, N.E., Boucher, M.B., Stencel, L.M. and Wilhite, B.A. (2007), "Continuous-flow preparation of biodiesel using microwave heating", Energ. Fuel., 21(3), 1777-1781. https://doi.org/10.1021/ef0606207
  3. Bournay, L., Casanave, D., Delfort, B., Hillion, G. Chodorge, J.A. (2005), "New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants", Catal. Today, 106(1-4), 190-192. https://doi.org/10.1016/j.cattod.2005.07.181
  4. Carey, A.A. and Hayzen, A.J (2001), The Dielectric Constant and Oil Analysis, Practicing Oil Analysis Magazine, September.
  5. Cheng, W.M., Raghavan, G.S.V., Ngadi, M. and Wang, N. (2006a) "Microwave power control strategies on the drying process I. Development and evaluation of new microwave drying system", J. Food Eng., 76(2), 188-194. https://doi.org/10.1016/j.jfoodeng.2005.05.006
  6. Cheng, W.M., Raghavan, G.S.V., Ngadi, M. and Wang, N. (2006b), "Microwave power control strategies on the drying process II. Phase-controlled and cycle-controlled microwave/air drying", J. Food Eng., 76(2), 195-201. https://doi.org/10.1016/j.jfoodeng.2005.05.007
  7. Colucci, J.A., Borrero, E.E. and Alape, F. (2005), "Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing", J. Am. Oil Chem. Soc., 82(7), 525-530. https://doi.org/10.1007/s11746-005-1104-3
  8. Diasakou, M., Louloudi, A. and Papayannakos, N. (1998), "Kinetics of the non-catalytic transesterification of soybean oil", Fuel, 77(12), 1297-1302. https://doi.org/10.1016/S0016-2361(98)00025-8
  9. Fan, L., Jin, R., Liu, Y., An, M. and Chen, S. (2011), "Enhanced extraction of patchouli alcohol from Pogostemon cablin by microwave radiation-accelerated ionic liquid pretreatment", J. Chromatogr. B., 879, 3653-3657. https://doi.org/10.1016/j.jchromb.2011.09.035
  10. Ghadge, S.V. and Raheman, H. (2006), "Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology", Bioresour. Technol., 97(3), 379-384. https://doi.org/10.1016/j.biortech.2005.03.014
  11. Hanh, H.D., Dong, N.T., Okitsu, K., Nishmura, R. and Maeda, Y. (2009), "Biodiesel production through transesterification of triolein with various alcohols in an ultrasonic field", Renew. Energ., 34(3), 766-768. https://doi.org/10.1016/j.renene.2008.04.007
  12. Hanh, H.D., Dong, N.T., Starvarache, C., Okitsu, K., Maeda, Y., Nishimura, R. (2008), "Methanolysis of triolein by low frequency ultrasonic irradiation", Energ. Conv. Manage., 49(2), 276-280. https://doi.org/10.1016/j.enconman.2007.06.016
  13. Hernando, J., Leton, P., Matia, M.P., Novella, J.L. and Alvarez, B.J. (2007), "Biodiesel and FAME synthesis assisted by microwaves: Homogeneous batch and flow processes", Fuel, 86(10-11), 1641-1644. https://doi.org/10.1016/j.fuel.2006.11.003
  14. Hsiao, M.C., Lin, C.C. and Chang, Y.H. (2011), "Microwave irradiation-assisted transesterification of soybean oil to biodiesel catalyzed by nanopowder calcium oxide", Fuel., 90(5), 1963-1967. https://doi.org/10.1016/j.fuel.2011.01.004
  15. Hsiao, M.C., Lin, C.C., Chang, Y.H. and Chen, L.C. (2010), "Ultrasonic mixing and closed microwave irradiation-assisted transesterification of soybean oil", Fuel, 89(12), 3618-3622. https://doi.org/10.1016/j.fuel.2010.07.044
  16. Innawong, B., Mallikarjunan, P., Irudayaraj, J. and Marcy, J.E. (2004), "The determination of fryingoil quality using Fourier transform infrared attenuated total reflectance", LWT-Food Sci. Technol. 37(1), 23-28. https://doi.org/10.1016/S0023-6438(03)00120-8
  17. Koc, A.B. (2009), "Ultrasonic monitoring of glycerol settling during transesterification of soybean oil", Bioresour. Technol., 100(1), 19-24. https://doi.org/10.1016/j.biortech.2008.05.037
  18. Kusdiana, D. and Saka, S. (2001), "Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol", Fuel, 80(5), 693-698. https://doi.org/10.1016/S0016-2361(00)00140-X
  19. Leadbeater, N.E. and Stencel, L.M. (2006), "Fast, easy preparation of biodiesel using microwave heating", Energ. Fuels, 20(5), 2281-2283. https://doi.org/10.1021/ef060163u
  20. Lopez, D.E., Goodwin, J.G. Jr., Bruce, D.A. and Lotero E. (2005), "Transesterification of triacetin with methanol on solid acid and base catalysts", Appl. Catal. A-Gen., 295(2), 97-105. https://doi.org/10.1016/j.apcata.2005.07.055
  21. Navas, J.A., Tres, A., Bou, R., Codony, R. and Guardiola, F. (2007), "Optimization of analytical methods for the assessment of the quality of fats and oils used in continuous deep fat frying", Grasas Aceites, 58(2), 148-153.
  22. Roy, I. and Gupta, M.N. (2003), "Non-thermal effects of microwaves on protease-catalyzed esterification and transesterification", Tetrahedron, 59(29), 5431-5436. https://doi.org/10.1016/S0040-4020(03)00867-6
  23. Satyanarayana, M. and Muraleedharan, C. (2011), "A comparative study of vegetable oil methyl esters (biodiesels)", Energy, 36(4), 2129-2137. https://doi.org/10.1016/j.energy.2010.09.050
  24. Vicente, G., Martýnez, M. and Aracil, J. (2004), "Integrated biodiesel production: a comparison of different homogeneous catalysts systems", Bioresour. Technol., 92(3), 297-305. https://doi.org/10.1016/j.biortech.2003.08.014
  25. Wang, P., Zhang, Q., Wang, Y., Wang, T., Li, X., Ding, L. and Jiang, G. (2010), "Evaluation of Soxhlet extraction, accelerated solvent extraction and microwave-assisted extraction for the determination of polychlorinated biphenyls and polybrominated diphenyl ethers in soil and fish samples", Anal. Chim. Acta., 663(1), 43-48. https://doi.org/10.1016/j.aca.2010.01.035
  26. Wang, Y., Ou, S., Liu, P., Xue, F. and Tang, S. (2006), "Comparison of two different processes to synthesize biodiesel by waste cooking oil", J. Mol. Catal. A-Chem., 252(1-2), 107-112. https://doi.org/10.1016/j.molcata.2006.02.047
  27. Wang, Y., Ou, S., Liu, P. and Zhang, Z. (2007), "Preparation of biodiesel from waste cooking oil via two-step catalyzed process", Energ. Convers. Manage., 48(1), 184-188. https://doi.org/10.1016/j.enconman.2006.04.016
  28. Zhang, Y., Dube, M.A., McLean, D.D. and Kates, M. (2003), "Biodiesel production from waste cooking oil: 1. Process design and technological assessment", Bioresour. Technol., 89(1), 1-16. https://doi.org/10.1016/S0960-8524(03)00040-3
  29. Zuo, Y., Zhang, K. and Lin, Y. (2007), "Microwave-accelerated derivatization for the simultaneous gas chromatographic-mass spectrometric analysis of natural and synthetic estrogenic steroids", J. Chromatogr. A., 1148(2), 211-218. https://doi.org/10.1016/j.chroma.2007.03.037

Cited by

  1. Functionalization of biochar derived from lignocellulosic biomass using microwave technology for catalytic application in biodiesel production vol.137, 2017, https://doi.org/10.1016/j.enconman.2017.01.063
  2. Microwave-Assisted Transesterification of Kusum Oil: Parametric, Kinetic and Thermodynamic Studies vol.32, pp.11, 2012, https://doi.org/10.14233/ajchem.2020.22890