DOI QR코드

DOI QR Code

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A. (Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology) ;
  • Talatahari, S. (Marand Faculty of Engineering, Tabriz University)
  • Received : 2010.12.16
  • Accepted : 2012.05.01
  • Published : 2012.06.25

Abstract

A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

Keywords

References

  1. Angeline, P. (1998), "Evolutionary optimization versus particle swarm optimization: philosophy and performance difference", Proceedings of the Evolutionary Programming Conference, San Diego, USA.
  2. American Institute of Steel Construction (AISC) (1989), Manual of Steel Construction-allowable Stress Design, 9th Ed., Chicago, IL.
  3. Coello, C.A.C. (2002), "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art", Comput. Meth. Appl. Mech. Eng., 191(11-12), 245-287.
  4. He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R. and Paton, R.C. (2004), "A particle swarm optimizer with passive congregation", Biosystem, 78, 135-147. https://doi.org/10.1016/j.biosystems.2004.08.003
  5. Kaveh, A. and Talatahari, S. (2009a), "Particle Swarm Optimizer, Ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(5-6), 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003
  6. Kaveh, A. and Talatahari, S. (2009b), "Size optimization of space trusses using Big Bang-Big Crunch algorithm", Comput. Struct., 87(17-18), 1129-1140. https://doi.org/10.1016/j.compstruc.2009.04.011
  7. Kaveh, A. and Talatahari, S. (2009c), "A particle swarm ant colony optimization algorithm for truss structures with discrete variables", J. Constr. Steel Res., 65(8-9), 1558-1568. https://doi.org/10.1016/j.jcsr.2009.04.021
  8. Kaveh, A. and Talatahari, S. (2010a), "A novel heuristic optimization method: charged system search", Acta Mech., 213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4
  9. Kaveh, A. and Talatahari, S. (2010b), "Optimal design of skeletal structures via the charged system search algorithm", Struct. Multidiscip. O., 41(6), 893-911. https://doi.org/10.1007/s00158-009-0462-5
  10. Kaveh, A. and Talatahari, S. (2010c), "Charged system search for optimum grillage systems design using the LRFD-AISC code", J. Constr. Steel Res., 66(6), 767-771. https://doi.org/10.1016/j.jcsr.2010.01.007
  11. Kennedy, J., Eberhart, R.C. and Shi, Y. (2001), Swarm Intelligence, Morgan Kaufman Publishers, San Francisco.
  12. LRFD-AISC, Manual of Steel Construction, Load and Resistance Factor Design (1999), Metric Conversion of the Second Edition, Vol. 1, 2. AISC, Chicago.
  13. Saka, M.P. and Hasançebi, O. (2009) "Design code optimization of steel structures using adaptive harmony search algorithm", Stud. Comput. Intel., 239, 79-120. https://doi.org/10.1007/978-3-642-03450-3_3
  14. Smith, S. (1998), "The simplex method and evolutionary algorithms", Proceedings of the IEEE International Conference on Evolutionary Computation, 799-804.
  15. Xu, J.J. and Xin, Z.H. (2005), "An extended particle swarm optimizer", Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05) - Workshop 6.

Cited by

  1. Optimum design of steel frames with semi-rigid connections and composite beams vol.55, pp.2, 2015, https://doi.org/10.12989/sem.2015.55.2.299
  2. Optimum design of steel space frames including soil-structure interaction vol.54, pp.1, 2016, https://doi.org/10.1007/s00158-016-1401-x
  3. Determining the Optimum Section of Tunnels Using Ant Colony Optimization vol.2013, 2013, https://doi.org/10.1155/2013/320360
  4. PSO algorithm for fundamental frequency optimization of fiber metal laminated panels vol.47, pp.5, 2013, https://doi.org/10.12989/sem.2013.47.5.713
  5. A hybrid imperialist competitive ant colony algorithm for optimum geometry design of frame structures vol.46, pp.3, 2013, https://doi.org/10.12989/sem.2013.46.3.403
  6. Optimum weight design of steel space frames with semi-rigid connections using harmony search and genetic algorithms 2016, https://doi.org/10.1007/s00521-016-2634-8
  7. A comparative study on optimum design of multi-element truss structures vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.521
  8. Optimum design of steel space frames under earthquake effect using harmony search vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.597
  9. Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.1035
  10. Optimum design of steel space frames with composite beams using genetic algorithm vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.503
  11. Optimal dimensioning for the corner combined footings vol.2, pp.2, 2012, https://doi.org/10.12989/acd.2017.2.2.169
  12. Proposing optimum parameters of TMDs using GSA and PSO algorithms for drift reduction and uniformity vol.63, pp.2, 2012, https://doi.org/10.12989/sem.2017.63.2.147
  13. IZGARA SİSTEMLERİN OPTİMİZASYONU ÜZERİNDEN KARINCA KOLONİ OPTİMİZASYON ALGORİTMASINDA KARINCA SAYISININ BELİRLENMESİ vol.22, pp.3, 2017, https://doi.org/10.17482/uumfd.298586
  14. Modeling for the strap combined footings Part I: Optimal dimensioning vol.30, pp.2, 2012, https://doi.org/10.12989/scs.2019.30.2.097
  15. Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms vol.70, pp.2, 2012, https://doi.org/10.12989/sem.2019.70.2.221
  16. A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.153
  17. Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model vol.18, pp.4, 2012, https://doi.org/10.12989/eas.2020.18.4.493
  18. Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795