DOI QR코드

DOI QR Code

Energy-efficiency enhancement and displacement-offset elimination for hybrid vibration control

  • Received : 2012.02.05
  • Accepted : 2012.07.02
  • Published : 2012.09.25

Abstract

New insights into our previously proposed hybrid-type method for vibration control are highlighted in terms of energy analysis, such as the assessment of energy efficiency and system stability. The hybrid method improves the bang-bang active method by combining it with an energy-recycling approach. Its simple configuration and low energy-consumption property are quite suitable especially for isolated structures whose energy sources are strictly limited. The harmful influence of the external voltage is assessed, as well as its beneficial performance. We show a new chattering prevention approach that both harvests electrical energy from piezoelectric actuators and eliminates the displacement-offset of the equilibrium point of structures. The amount of energy consumption of the hybrid system is assessed qualitatively and is compared with other control systems. Experiments and numerical simulations conducted on a 10-bay truss can provide a thorough energy-efficiency evaluation of the hybrid suppression system having our energy-harvesting system.

Keywords

References

  1. Agnes, G.S. (1995), "Development of a modal model for simultaneous active and passive piezoelectric vibration suppression", J. Intel. Mat. Syst. Str., 6(4), 482-487. https://doi.org/10.1177/1045389X9500600405
  2. Clark, W.W. (2000), "Vibration control with state-switched piezoelectric materials", J. Intel. Mat. Syst. Struct., 11(4), 263-271. https://doi.org/10.1106/18CE-77K4-DYMG-RKBB
  3. Hagood, N.W. and Von Flotow, A. (1991), "Damping of structural vibrations with piezoelectric materials and passive electrical networks", J. Sound Vib., 146(2), 243-268. https://doi.org/10.1016/0022-460X(91)90762-9
  4. Han, J.H., Rew, K.H. and Lee, I. (1997), "An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor", Smart Mater. Struct., 6(549), 549-558. https://doi.org/10.1088/0964-1726/6/5/006
  5. Jaffe, B., Cook, Jr. W.R. and Jaffe, H. (1979), Piezoelectric ceramics, Academic Press, London.
  6. Junkins, J.L. and Kim, Y. (1993), Introduction to dynamics and control of flexible structures: AIAA education series, Washington D.C.
  7. Kim, I.H., Jung, H.J. and Koo, J.H. (2010), "Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable", Smart Mater. Struct., 19(11), 115027. https://doi.org/10.1088/0964-1726/19/11/115027
  8. Larson, G.D. and Cunefare, K.A. (2004), "Quarter-cycle switching control for switch-shunted dampers", Trans. ASME, J. Vib. Acoust., 126(2), 278-283. https://doi.org/10.1115/1.1687394
  9. Lee, D.O., Kang, L.H. and Han, J.H. (2011), "Active vibration isolation demonstration system using the piezoelectric unimorph with mechanically pre-stressed substrate", J. Intel. Mat. Syst. Struct., 22(13), 1399-1409. https://doi.org/10.1177/1045389X11411215
  10. Liang, J. and Liao, W.H. (2012), "Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems", IEEE T. Ind. Electron., 59(4), 1950-1960. https://doi.org/10.1109/TIE.2011.2167116
  11. Lim, S.C. and Choi, S.B. (2007a), "Vibration control of an HDD disk-spindle system utilizing piezoelectric bimorph shunt damping: I. dynamic analysis and modeling of the shunted drive", Smart Mater. Struct., 16(3), 891-900. https://doi.org/10.1088/0964-1726/16/3/039
  12. Lim, S.C. and Choi, S.B. (2007b), "Vibration control of an HDD disk-spindle system using piezoelectric bimorph shunt damping: II. optimal design and shunt damping implementation", Smart Mater. Struct.,16(3), 901-908. https://doi.org/10.1088/0964-1726/16/3/040
  13. Makihara, K., Onoda, J. and Minesugi, K. (2005), "Low-energy-consumption hybrid vibration suppression based on an energy-recycling approach", AIAA J., 43(8), 1706-1715. https://doi.org/10.2514/1.14223
  14. Makihara, K., Onoda, J. and Minesugi, K. (2006), "Behavior of piezoelectric transducer on energy-recycling semi-active vibration suppression", AIAA J., 44(2), 411-413. https://doi.org/10.2514/1.9811
  15. Makihara, K., Onoda, J. and Minesugi, K. (2007a), "Using tuned electrical resonance to enhance bang-bang vibration control", AIAA J., 45(2), 497-504. https://doi.org/10.2514/1.21736
  16. Makihara, K., Onoda, J. and Minesugi, K. (2007b), "Comprehensive assessment of semi-active vibration suppression including energy analysis", Trans. ASME, J. Vib. Acoust,., 129(1), 84-93. https://doi.org/10.1115/1.2345675
  17. Makihara, K., Takeuchi, S., Shimose, S. and Onoda, J. (2012), "Innovative digital self-powered autonomous system for multimodal vibration suppression", AIAA J., 50(9), 2004-2011. https://doi.org/10.2514/1.J051560
  18. Morari, M. and Niederberger, D. (2006), "Autonomous switching circuit to suppress mechanical vibration", IEEE Ind. Electron., 53(1), 11-13.
  19. Morgan, R.A. and Wang, K.W. (1998), "An integrated active-parametric control a roach for active-passive hybrid piezoelectric network with variable resistance", J. Intel. Mat. Syst. Struct., 9(7), 564-573. https://doi.org/10.1177/1045389X9800900708
  20. Oh, H.U. and Choi, Y.J. (2011), "Enhancement of pointing performance by semi-active variable damping isolator with strategies for attenuating chattering effects", Sensors Actuat. A. - Phys., 165(2), 385-391. https://doi.org/10.1016/j.sna.2010.11.009
  21. Onoda, J., Makihara, K. and Minesugi, K. (2003), "Energy-recycling semi-active method for vibration suppression with piezoelectric transducers", AIAA J., 41(4), 711-719. https://doi.org/10.2514/2.2002
  22. Park, K.H., Yoon, B.S., Nguyen, N.T., Goo, N.S., Kang, T.S. and Yoon, K.J. (2010), "Piezo-composite actuated control surface system for flying vehicle", Aircraft Eng. Aerospace Technol., 82(6), 372-375. https://doi.org/10.1108/00022661011104529
  23. Qiu, J., Ji, H. and Zhu, K. (2009), "Semi-active vibration control using piezoelectric actuators in smart structures", Front. Mech. Eng. China, 4(3), 242-251.
  24. Richard, C., Guyomar, D., Audigie, D. and Bassaler, H. (2000), "Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor", Proceedings of the SPIE Conf. on Passive Damping and Isolation, Newport Beach, Bellingham, WA SPIE Optical Engineering Press.
  25. Sodano, H.A., Inman, D.J. and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib., 36(3), 197-205. https://doi.org/10.1177/0583102404043275
  26. Tang, J. and Wang, K.W. (2001), "Active-passive hybrid piezoelectric networks for vibration control comparisons and improvement", Smart Mater. Struct., 10(4), 794-806. https://doi.org/10.1088/0964-1726/10/4/325
  27. Wu, S. (1996), "Piezoelectric shunts with a parallel R-L circuit for structural damping and vibration control", Proceedings of the SPIE Conf. on Damping and Isolation, Newport Beach, Bellingham, WA SPIE Optical Engineering Press.

Cited by

  1. Enhanced Adaptive Filtering Algorithm Based on Sliding Mode Control for Active Vibration Rejection of Smart Beam Structures vol.7, pp.7, 2017, https://doi.org/10.3390/app7070750
  2. Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control vol.11, pp.6, 2013, https://doi.org/10.12989/sss.2013.11.6.623
  3. Effective vibration control of multimodal structures with low power requirement vol.13, pp.3, 2014, https://doi.org/10.12989/sss.2014.13.3.435