DOI QR코드

DOI QR Code

Development of computational software for flutter reliability analysis of long span bridges

  • Cheng, Jin (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University)
  • Received : 2010.02.25
  • Accepted : 2011.07.19
  • Published : 2012.05.25

Abstract

The flutter reliability analysis of long span bridges requires use of a software tool that predicts the uncertainty in a flutter response due to uncertainties in the model formulation and input parameters. Existing flutter analysis numerical codes are not capable of dealing with stochastic uncertainty in the analysis of long span bridges. The goal of the present work is to develop a software tool (FREASB) to enable designers to efficiently and accurately conduct flutter reliability analysis of long span bridges. The FREASB interfaces an open-source Matlab toolbox for structural reliability analysis (FERUM) with a typical deterministic flutter analysis code. The paper presents a brief introduction to the generalized first-order reliability method implemented in FREASB and key steps involved in coupling it with a typical deterministic flutter analysis code. A numerical example concerning flutter reliability analysis of a long span suspension bridge with a main span of 1385 m is presented to demonstrate the application and effectiveness of the methodology and the software.

Keywords

References

  1. Agar,T.T.A (1998), "The analysis of aerodynamic flutter of suspension bridges", Comput. Struct., 30(3), 593-600.
  2. Cai, C.S., Albrecht, P. and Bosch, H.R. (1999), "Flutter and buffeting analysis: Luling and dear Isle bridges", J. Bridge Eng.- ASCE, 4(3), 181-188 https://doi.org/10.1061/(ASCE)1084-0702(1999)4:3(181)
  3. Chen, S.R. and Cai, C.S. (2003), "Evolution of long-span bridge response to wind-numerical simulation and discussion", Comput. Struct., 81(21), 2055-2066. https://doi.org/10.1016/S0045-7949(03)00261-X
  4. Chen, xinzhong, Kareem, Ahsan and Matsumoto, Masaru (2001), "Multimode coupled flutter and buffeting analysis of long span bridges", J. Wind Eng. Ind. Aerod., 89(7-8),649-664. https://doi.org/10.1016/S0167-6105(01)00064-2
  5. Cheng, Jin and Xiao, Ru cheng (2005), "Serviceability reliability analysis of cable-stayed bridges", Struct. Eng. Mech., 20(6), 609-630. https://doi.org/10.12989/sem.2005.20.6.609
  6. Cheng, Jin, Cai, C.S., Xiao, Ru cheng and Chen, S.R. (2005), "Flutter reliability analysis of suspension bridges", J. Wind Eng. Ind. Aerod., 93(10),757-775. https://doi.org/10.1016/j.jweia.2005.08.003
  7. Cheng, Jin, Jiang, Jian Jing, Xiao, Ru Cheng and Xiang, Hai Fan (2002), "Nonlinear aerostatic stability analysis of Jiang Yin suspension bridge", Eng. Struct., 240(6),773-781.
  8. Der Kiureghian, A., Haukaas, T. and Fajimura, K. (2006), "Structural reliability software at University of California, Berkley", Struct. Saf., 28(1-2), 44-67. https://doi.org/10.1016/j.strusafe.2005.03.002
  9. Der Kiureghian, A., Lin, H.Z. and Hwang, S.J. (1987), "Second-order reliability approximations", J. Eng. Mech. - ASCE, 113(8), 1208-1225. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:8(1208)
  10. Dey, A. and Mahadevan, S. (2000), "Reliability estimation with time-variant loads and resistances", J. Struct. Eng. - ASCE, 126(5), 612-620. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:5(612)
  11. Elhewy, A.H., Mesbahi, E. and Pu, Y. (2006), "Reliability analysis of structures using neural network method", Probabilist. Eng. Mech., , 21(1),44-53. https://doi.org/10.1016/j.probengmech.2005.07.002
  12. Ge, Y.J., Xiang, H.F. and Tanaka, H. (2000), "Application of a reliability analysis model to bridge flutter under extreme winds", J. Wind Eng. Ind. Aerod., 86(2-3),155-167. https://doi.org/10.1016/S0167-6105(00)00008-8
  13. Gollwitzer, S., Kirchganer, B., Fischer, R. and Rackwitz (2006),"PERMAS-RA/STRUREL system of programs for probabilistic reliability analysis", Struct. Saf., 28(1-2), 108-129. https://doi.org/10.1016/j.strusafe.2005.03.008
  14. Hasofer, A.M. and Lind, N.C. (1974) ,"Exact and invariant second-moment code format", J. Eng. Mech. - ASCE Div., 100(1),111-121.
  15. Haukaas, Terje and Der Kiureghian, Armen (2007), "Methods and object-oriented software for FE reliability and sensitivity analysis with application to a bridge structure", J. Comput. Civil. Eng., 21(3),151-163. https://doi.org/10.1061/(ASCE)0887-3801(2007)21:3(151)
  16. Hua, X.G., Chen, Z.Q., Ni, Y.Q. and Ko, J.M. (2007), "Flutter analysis of long-span bridges using ANSYS", Wind Struct., 10(1), 61-82. https://doi.org/10.12989/was.2007.10.1.061
  17. Hohenbichler, M. and Rackwitz, R. (1988), "Improvement of second-order reliability estimates by importance sampling", J. Eng. Mech. - ASCE, 114(12), 2195-2199. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2195)
  18. Larsen, Allan (1997), "Prediction of aeroelastic stability of suspension bridges during erection", J. Wind Eng. Ind. Aerod., 72, 265-274. https://doi.org/10.1016/S0167-6105(97)00248-1
  19. Lau David, T., Cheung, M.S. and Cheng, S.H. (2000), "3D flutter analysis of bridges by spine finite-strip method", J. Struct. Eng.- ASCE, 126(10), 1246-1254. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1246)
  20. Lee, S.H. and Kwak, B.M. (2006), "Response surface augmented moment method for efficient reliability analysis", Struct. Saf., 28(3),261-272. https://doi.org/10.1016/j.strusafe.2005.08.003
  21. Lin, Hong Zong and Khalessi, M.R. (2006), "General outlook of UNIPASSe V5.0: A general-purpose probabilistic software system", Struct. Saf., 28(1-2),196-216. https://doi.org/10.1016/j.strusafe.2005.03.009
  22. Melchers, R.E. (2002), Structural reliability: Analysis and prediction, 2nd Ed., Wiley, New York.
  23. Namini, A., Albrecht, P. and Bosch, H. (1992), "Finite element-based flutter analysis of cable-suspended bridges", J. Struct. Eng.- ASCE, 118(6), 1509-1526. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1509)
  24. Ostenfeldrosenthal, P., Madsen, H.O. and Larsen, A. (1992), "Probabilistic flutter criteria for long span bridges", J. Wind Eng. Ind. Aerod., 42(1-3),1265-1276. https://doi.org/10.1016/0167-6105(92)90133-U
  25. Petschacher, M. (2007), "Probabilistic aging model for infrastructure buildings", Struct. Infrastruct. E., 2, 1-6.
  26. Pourzeynail, S. and Datta, T.K. (2002), "Reliability analysis of suspension bridges against flutter", J. Sound Vib., 254(1), 143-162. https://doi.org/10.1006/jsvi.2002.4090
  27. Pourzeynali1, S. and Datta, T.K. (2005), "Reliability analysis of suspension bridges against fatigue failure from the gusting of wind", J. Bridge Eng.- ASCE, 10(3), 262-271. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:3(262)
  28. Rackwitz, R. and Fiessler, B. (1978), "Structural reliability under combined load sequences", Comput. Struct., 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9
  29. Schueller, G.I. (Ed) (2006), "General-purpose software for structural reliability analysis", Struct. Saf., 28(1-2), 1-216. https://doi.org/10.1016/j.strusafe.2005.03.001
  30. Schueller, G.I. and Pradlwarter, H.J. (2005), COSSAN (computational stochastic structural analysis) - standalone toolbox, user's manual, Institute of Engineering Mechanics, Leopold-Franzens University, Innsbruck, Austria.
  31. Thacker, B.H., Riha, D.S., Fitch, S.H.K., Huyse, L.J. and Pleming, J.B. (2006), "Probabilistic engineering analysis using the nessus software", Struct. Saf., 28(1-2),83-107. https://doi.org/10.1016/j.strusafe.2004.11.003
  32. Tvedt, Lars (2006), "Proban - probabilistic analysis", Struct. Saf., 28(1-2),150-163. https://doi.org/10.1016/j.strusafe.2005.03.003
  33. Wong, S.M., Hobbs, R.E. and Onof, C. (2005), "An adaptive response surface method for reliability analysis of structures with multiple loading sequences", Struct. Saf., 27(4),287-308. https://doi.org/10.1016/j.strusafe.2005.02.001
  34. Xiang, H.F. (1995), Wind-resistant study on the Jiang Yin suspension bridge, Research Report of Tongji University, Shanghai, China (in Chinese)
  35. Zhang, Xinjun (2000), Three-dimensional nonlinear flutter analysis of long-span bridges, Ph.D. Thesis, Tongji University, Shanghai, China.
  36. Zhang, Y. and Der Kiureghian, A. (1997), Finite element reliability methods for inelastic structures, Report No. UCB/SEMM-97/05, Department of Civil & Environmental Engineering, University of California, Berkeley, CA, USA.