DOI QR코드

DOI QR Code

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S. (Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron) ;
  • Manigandan, K. (Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron) ;
  • Godbole, C. (Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron) ;
  • Paramsothy, M. (Department of Mechanical Engineering, National University of Singapore) ;
  • Gupta, M. (Department of Mechanical Engineering, National University of Singapore)
  • Received : 2012.03.24
  • Accepted : 2012.07.12
  • Published : 2012.09.25

Abstract

In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

Keywords

References

  1. Chawla, K.K. (1987), Composite materials: science and engineering, Springer-Verlag, New York, USA.
  2. Deng, K.K., Wu, K., Wu, Y.W., Nie, K.B. and Zheng, M.Y. (2010), "Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites", J. Alloy. Compd., 504(2), 542-547. https://doi.org/10.1016/j.jallcom.2010.05.159
  3. Dieter, G. (2007), Mechanical metallurgy, McGraw Hill Publishers, Third Edition.
  4. Fan, X., Tang, W., Zhang, S., Li, D. and Peng, Y. (2010), "Effects of dynamic recrystallization in extruded and compressed AZ31 magnesium alloy", Acta. Metall. Sin., 23(5), 334-342.
  5. Francis, E.D., Prasad, N.E., Ratnam, C., Kumar, P.S. and Kumar, V.V. (2011), "Synthesis of nano alumina reinforced magnesium-alloy composites", Int. J. Adv. Sci. Technol., 27, 35-44.
  6. Ganesh, V.V., Gupta, M. and Srivatsan, T.S. (2010), Journal of recent research developments in materials science and engineering, ISBN: 81-7895-057-X, 119-136.
  7. Gupta, M. and Srivatsan, T.S. (1999), "Microstructure and grain growth behavior of an aluminum alloy metal matrix composite processed by disintegrated melt deposition", J. Mater. Eng. Perform., 8(4), 473-478. https://doi.org/10.1361/105994999770346792
  8. Gupta, M., Lai, M.O. and Lim, C. (1997), "Regarding the processing associated microstructure and mechanical properties improvement of an A!-4.5 Cu alloy", J. Alloy. Compd., 260(1), 250-255. https://doi.org/10.1016/S0925-8388(97)00156-4
  9. Habibnejad-Korayem, M., Mahmudi, R. and Poole, W.J. (2009), "Enhanced properties of Mg-based nanocomposites reinforced with Al2O3 nano-particles", Mater. Sci. Eng. A, 519(1-2), 198-203. https://doi.org/10.1016/j.msea.2009.05.001
  10. Hassan, S.F. and Gupta, M. (2006), "Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg", J. Alloy. Compd., 419(1-2), 84-90. https://doi.org/10.1016/j.jallcom.2005.10.005
  11. Ho, K.F., Gupta, M. and Srivatsan, T.S. (2004), "The mechanical behavior of magnesium alloy AZ91 reinforced with fine copper particulates", Mater. Sci. Eng. A, 369(1-2), 302-308 https://doi.org/10.1016/j.msea.2003.11.011
  12. Hong-Liang, Z., Shao-kang, G., Fei-yan, Z., Qing-kui, L. and Li-guo, W. (2005), Transactions of nonferrous metals society of China, 15, 144-148.
  13. Katarzyna N Brasczynska-Malik (2011), Magnesium alloys - Design, Processing and Properties, Edited by: Frank Czerwinski, Katarzyna N. Braszczy ska-Malik, Published by InTech, 95-112.
  14. Koss, D.A. and Copley, S.M. (1971), Metallurgical transactions, 2A, 1557-1560.
  15. Ling, P.S., Gupta, M., Lai, M.O. and Srivatsan, T.S. (2000), Aluminum transactions, Int. J., 2(2), 209-215.
  16. Mao, X.P., Huo, X.D., Sun, X.J. and Chia, Y.Z. (2010), "Strengthening mechanisms of a new 700MPa hot rolled Ti-micro alloyed steel produced by compact strip production", J. Mater. Process. Tech., 210(12), 1660-1666. https://doi.org/10.1016/j.jmatprotec.2010.05.018
  17. Nguyen, Q.B. and Gupta, M. (2008), "Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates", J. Alloy. Compd., 459(1-2), 244-250. https://doi.org/10.1016/j.jallcom.2007.05.038
  18. Paramsothy, M., Chan, J., Kwok, R. and Gupta, M. (2011a), "The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91", J. Alloy. Compd., 509(28), 7572-7578. https://doi.org/10.1016/j.jallcom.2011.04.120
  19. Paramsothy, M., Chan, J., Kwok, R. and Gupta, M. (2011b), Composites Part A: Applied science and manufacturing, 42(2), 180-188. https://doi.org/10.1016/j.compositesa.2010.11.001
  20. Paramsothy, M., Hasan, S.F., Srikanth, N. and Gupta, M. (2009), "Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles", Mater. Sci. Eng. A, 527(1-2), 162-168. https://doi.org/10.1016/j.msea.2009.07.054
  21. Radi, Y. and Mahmudi, R. (2010), "Effect of Al2O3 nano-particles on the microstructural stability of AZ31 Mg alloy after equal channel angular pressing", Mater. Sci. Eng. A, 527(10-11), 2764-2771. https://doi.org/10.1016/j.msea.2010.01.029
  22. Seshan, S., Jayamathy, M., Kailas, S.V. and Srivatsan, T.S. (2003), "The tensile behavior of two magnesium alloys reinforced with silicon carbide particulates", Mater. Sci. Eng. A, 363(1-2), 345-351. https://doi.org/10.1016/S0921-5093(03)00621-X
  23. Srivatsan, T.S. and Lewandowski, J.J. (2005), "Metal matrix composites: Types, reinforcements, processing, properties and applications", Adv. Struct. Mater, Taylor & Francis, USA.
  24. Srivatsan, T.S. and Sudarshan, T.S. (1993) Rapid solidification technology: An engineers guide, Technomic Publishing Company, Lancaster, 603-720.
  25. Srivatsan, T.S., Meslet, Al-Hajri and Lam, P.C. (2005), "The quasi-static, cyclic fatigue and final fracture behavior of a magnesium alloy metal-matrix composite", Compos. Part B-Eng., 36(3), 209-222. https://doi.org/10.1016/j.compositesb.2004.09.004
  26. Tham, L.M., Gupta, M. and Cheng, L. (1999), "Influence of processing parameters during disintegrated melt deposition processing on near net shape synthesis of aluminum based metal matrix composites", Mater. Sci. Technol., 15(10), 1139-1146. https://doi.org/10.1179/026708399101505185
  27. Ye, H.Z. and Liu, X.Y. (2004), "Review of recent studies in magnesium matrix composites", J. Mater. Sci., 39(20), 6153-6171. https://doi.org/10.1023/B:JMSC.0000043583.47148.31
  28. Yong, M.S. and Clegg, A.J. (1999), Foundry man, 71.

Cited by

  1. Mechanical properties of Al/Al2O3and Al/B4C composites vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.263
  2. Effect of particle morphology of Ni on the mechanical behavior of AZ91E-Ni coated nano Al2O3 composites vol.4, pp.6, 2017, https://doi.org/10.1088/2053-1591/aa6fe4