DOI QR코드

DOI QR Code

A Carrier-Based Pulse Width Modulation Method for Indirect Matrix Converters

  • Received : 2011.09.23
  • Published : 2012.05.20

Abstract

This paper proposes a carrier-based pulse width modulation (PWM) method to control an indirect matrix converter (IMC) by analyzing the relationship between the space vector PWM (SVPWM) and the carrier-based PWM. The complexity of the SVPWM method for an IMC can be reduced by using an equivalent carrier-based PWM method. The advantage of the proposed algorithm is its ability use only one symmetrical triangular carrier signal to generate the gate signals for all of the power switches in both the rectifier and inverter stages as compared to the conventional method where the carrier signal used in the rectifier stage is different from that of the inverter stage. In addition, by using a suitable offset voltage component in the modulation signals, the output voltage magnitude reaches 0.866 of the input voltage magnitude. Simulation and experimental results are provided in order to validate the proposed method.

Keywords

References

  1. A. Alesina and M.G.B. Venturini "Solid-state power conversion: A Fourier analysis approach to generalized transformer synthesis," IEEE Trans. Circuits and Syst., Vol.28, No.4, pp. 319- 330, Apr. 1981. https://doi.org/10.1109/TCS.1981.1084993
  2. J. W. Kolar, T. Friedli, J. Rodriguez, and P.W. Wheeler, "Review of three-phase PWM AC-AC converter topologies," IEEE Trans. Ind. Electron., Vol.58, No.11, pp. 4988-5006, Nov. 2011. https://doi.org/10.1109/TIE.2011.2159353
  3. P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein, "Matrix converters: a technology review," IEEE Trans. Ind. Electron., Vol.49, No.2, pp. 276-288, Apr. 2002. https://doi.org/10.1109/41.993260
  4. T. F. Podlesak, D. C. Katsis, P. W. Wheeler, J. C. Clare, L. Empringham, and M. Bland, "A 150-kVA vector-controlled matrix converter induction motor drive," IEEE Trans. Ind. Appl., Vol. 41, No. 3, pp. 841-847, May/Jun. 2005. https://doi.org/10.1109/TIA.2005.847303
  5. C. Klumpner and F. Blaabjerg, "Two stage direct power converters: an alternative to the matrix converter," in Proc. IEE Seminar on Matrix Converters, pp. 7/1- 7/9, [Digest No. 2003/10100]. Apr. 2003.
  6. J. W. Kolar, F. Schafmeister, S. D. Round, and H. Ertl, "Novel three-phase AC-AC sparse matrix converters," IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1649-1661, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904178
  7. C. Klumpner and F. Blaabjerg, "Modulation method for a multiple drive system based on a two-stage direct power conversion topology with reduced input current ripple," IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 922- 929, Jul. 2005. https://doi.org/10.1109/TPEL.2005.850965
  8. R. Pena, R. Cardenas, E. Reyes, J. Clare, and P. Wheeler, "A Topology for multiple generation system with doubly fed induction machines and indirect matrix converter," IEEE Trans. Ind. Electron., Vol. 56, No. 10, pp. 4181-4193, Oct. 2009. https://doi.org/10.1109/TIE.2009.2028353
  9. T. Wijekoon, C. Klumpner, P. Zanchetta, and P. W. Wheeler, "Implementation of a hybrid AC-AC direct power converter with unity voltage transfer," IEEE Trans. Power Electron., Vol. 23, No. 4, pp. 1918-1926, Jul. 2008.
  10. M. Milanovic and B. Dobaj, "Unity input displacement factor correction principle for direct AC to AC matrix converters based on modulation strategy," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 47, No. 2, pp. 221-230, Feb. 2000. https://doi.org/10.1109/81.828575
  11. L. Helle, K. B. Larsen, A. H. Jorgensen, S. Munk-Nielsen, and F. Blaabjerg, "Evaluation of modulation schemes for three-phase to three-phase matrix converters," IEEE Trans. Ind. Electron., Vol. 51, No. 1, pp. 158-171, Feb. 2004. https://doi.org/10.1109/TIE.2003.821900
  12. Y. D. Yoon and S. K. Sul; "Carrier-based modulation technique for matrix converter," IEEE Trans. Power Electron., Vol. 21, No. 6, pp. 1691-1703, Nov. 2006. https://doi.org/10.1109/TPEL.2006.882935
  13. Y. Li, N. S. Choi, and B. M. Han, "DDPWM based control of matrix convertes," Journal of Power Electronics, Vol. 9, No. 4, pp. 535-543, Jul. 2009.
  14. S. M Kim, Y. D. Yoon, and S. K. Sul, "Pulsewidth modulation method of matrix converter for reducing output current ripple," IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2620-2629, Oct. 2010. https://doi.org/10.1109/TPEL.2010.2042179
  15. H. M. Nguyen, H. H. Lee, and T. W. Chun, "Input power factor compensation algorithms using a new direct-svm method for matrix converter," IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 232-243, Jan. 2011. https://doi.org/10.1109/TIE.2010.2044736
  16. P. Correa, J. Rodriguez, M. Rivera, J. R. Espinoza, and J. W. Kolar, "Predictive control of an indirect matrix converter," IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1847-1853, Jun. 2009. https://doi.org/10.1109/TIE.2009.2013686
  17. J. Rodriguez, M. Rivera, J. W. Kolar, and P. W. Wheeler "A review of control and modulation methods for matrix converters," IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 58-70, Jan. 2012. https://doi.org/10.1109/TIE.2011.2165310
  18. M. Hamouda, H. F. Blanchette, K. Al-Haddad, and F. Fnaiech, "An efficient DSP-FPGA-Based real-time implementation method of SVM algorithms for an indirect matrix converter," IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5024-5031, Nov. 2011. https://doi.org/10.1109/TIE.2011.2159952
  19. R. Pena, R. Cardenas, E. Reyes, J. Clare, and P. Wheeler, "Control of a doubly fed induction generator via an indirect matrix converter with changing DC voltage," IEEE Trans. Ind. Electron., Vol. 58, No. 10, pp. 4664-4674, Oct. 2011. https://doi.org/10.1109/TIE.2011.2109334
  20. L. Wei and T. A. Lipo, "A novel matrix converter topology with simple commutation," in Record of the IEEE Industry Applications Conference, Chicago, IL, USA, pp. 1749-1754, 2011.
  21. T. D. Nguyen and H. H. Lee "Modulation strategies to reduce common-mode voltage for indirect matrix converters," IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 129-140, Jan. 2012. https://doi.org/10.1109/TIE.2011.2141101
  22. P. C. Loh, R. Rong, F. Blaabjerg, and P. Wang, "Digital carrier modulation and sampling issues of matrix converters," IEEE Trans. Power Electron., Vol. 24, No. 7, pp. 1690-1700, Jul. 2009. https://doi.org/10.1109/TPEL.2009.2016423
  23. B. Wang and G. Venkataramanan, "A carrier based PWM algorithm for indirect matrix converters," in Proc. PESC, pp. 1-8, 2006.
  24. H. W. Van der Broeck, H. C. Skudelny, and G. V. Stanke, "Analysis and realization of a pulsewidth modulator based on voltage space vectors," IEEE Trans. Ind. Appl., Vol. 24, No. 1, pp. 142-150, Jan./Feb. 1988. https://doi.org/10.1109/28.87265
  25. V. Blasko, "Analysis of a hybrid PWM based on modified space-vector and triangle-comparison methods," IEEE Trans. Ind. Appl., Vol. 33, No. 3, pp. 756-764, May/Jun. 1997. https://doi.org/10.1109/28.585866

Cited by

  1. Space-Vector Overmodulation Strategy for Ultrasparse Matrix Converter Based on the Maximum Output Voltage Vector vol.32, pp.7, 2017, https://doi.org/10.1109/TPEL.2016.2604418
  2. Improved Space Vector Modulation Strategy for AC-DC Matrix Converters vol.13, pp.4, 2013, https://doi.org/10.6113/JPE.2013.13.4.647
  3. An Effective Carrier-Based Modulation Strategy to Reduce the Switching Losses for Indirect Matrix Converters vol.15, pp.3, 2015, https://doi.org/10.6113/JPE.2015.15.3.702
  4. Carrier-based pulse-width modulation control strategy of five-phase six-bridge indirect matrix converter under unbalanced load 2017, https://doi.org/10.1049/iet-pel.2017.0323
  5. Efficiency Evaluation of Five-Phase Outer-Rotor Fault-Tolerant BLDC Drives under Healthy and Open-Circuit Faulty Conditions vol.14, pp.2, 2014, https://doi.org/10.4316/AECE.2014.02023