Abstract
We present the method to infer Context-Free Grammars by applying genetic algorithm to the Binary Third-order Recurrent Neural Networks(BTRNN). BTRNN is a multiple-layered architecture of recurrent neural networks, each of which is corresponding to an input symbol, and is combined with external stack. All parameters of BTRNN are represented as binary numbers and each state transition is performed with any stack operation simultaneously. We apply Genetic Algorithm to BTRNN chromosomes and obtain the optimal BTRNN inferring context-free grammar of positive and negative input patterns. This proposed method infers BTRNN, which includes the number of its states equal to or less than those of existing methods of Discrete Recurrent Neural Networks, with less examples and less learning trials. Also BTRNN is superior to the recent method of chromosomes representing grammars at recognition time complexity because of performing deterministic state transitions and stack operations at parsing process. If the number of non-terminals is p, the number of terminals q, the length of an input string k, and the max number of BTRNN states m, the parallel processing time is O(k) and the sequential processing time is O(km).
이 논문은 이진 삼차 재귀 신경망(Binary Third-order Recurrent Neural Networks: BTRNN)에 유전자 알고리즘을 적용하여 문맥-자유 문법을 추론하는 방법을 제안한다. BTRNN은 각 입력심볼에 대응되는 재귀 신경망들의 다층적 구조이고 외부의 스택과 결합된다. BTRNN의 매개변수들은 모두 이진수로 표현되며 상태 전이와 동시에 스택의 한 동작이 실행된다. 염색체로 표현된 BTRNN들에 유전자 알고리즘을 적용하여 긍정과 부정의 입력 패턴들의 문맥-자유 문법을 추론하는 최적의 BTRNN를 얻는다. 이 방법은 기존의 신경망 이용방법보다 적은 학습량과 적은 학습회수로 작거나 같은 상태 수를 갖는 BTRNN을 추론한다. 또한 문법 표현의 염색체 이용방법보다 parsing과정에서 결정적인 상태전이와 스택동작이 실행되므로 입력 패턴에 대한 인식처리 시간복잡도가 우수하다. 문맥-자유 문법의 비단말 심볼의 개수 p, 단말 심볼의 개수 q, 그리고 길이가 k인 문자열이 입력이 될 때, BTRNN의 최대 상태수가 m이라고 하면, BTRNN의 인식처리 병렬처리 시간은 O(k)이고 순차처리 시간은 O(km)이다.