Abstract
Modern society is experiencing a variety of crimes, and to prevent crime is being studied. Existing studies related to the crime of crimes that occur on spatial analysis and geographic information, or to analyze the type of criminal offense of studies have been conducted, However the existing studies of the geographical and psychological crime that occurs throughout the study area and by analyzing the motives for the crime prevention research is the most. In this paper, we introduce Markov processor model for predicting the crime is present. Of several crimes, murder, government official crimes, the incidence of violent crime has occurred over time by using the predicted incidence of crime. Presented in this paper, predictive modeling is used in a crime occurred in the average duration of the overall average number of crimes that occurred in the one-year average, which recently labeled as the average prediction was compared to if you can increase the likelihood, recent average to apply to increase the probability of the prediction that crime have been investigated.
현대 사회는 다양한 범죄들이 발생하고 있고, 범죄를 예방하기 위한 연구가 진행되고 있다. 기존의 범죄에 관련된 연구들은 범죄가 발생하는 공간과 지리정보를 분석하거나, 범죄자들의 범죄 유형을 분석하는 연구들이 진행되어 왔다. 그러나 기존의 연구들은 지리적, 심리학적인 연구를 통해 범죄가 발생하는 지역과 동기들을 분석하여 범죄를 예방하기 위한 연구들이 대부분이다. 본 논문에서는 마코프 프로세서를 도입하여 범죄를 예측하기 위한 모델링을 제시한다. 여러 범죄 중 살인, 공무원 범죄, 폭력의 범죄 발생 건수를 사용하여 시간에 따른 범죄 발생 건수를 예측하였다. 본 논문에서 제시한 범죄 예측 모델링에서 사용될 범죄 발생 평균값에 범죄가 발생한 기간에 발생한 범죄 발생 건수의 전체 평균값, 1년 평균값, 최근 평균값으로 분류하여 어느 것이 예측 확률을 높일 수 있는 지 비교하였고, 최근 평균값을 적용하는 것이 범죄 발생 예측확률을 높일 수 있음을 확인하였다.