DOI QR코드

DOI QR Code

A Study of the Prediction of Incidence of Crime using Markov process

마코프 프로세스를 적용한 범죄 발생 예측 방법에 관한 연구

  • Chung, Young-Suk (Dept. of Computer Science & Engineering, Kongju national University) ;
  • Jung, Jin-Young (Dept. of Bio Information, Daejeon Health Sciences College)
  • 정영석 (공주대학교 컴퓨터공학과) ;
  • 정진영 (대전보건대학교 바이오정보과)
  • Received : 2011.11.14
  • Accepted : 2011.12.28
  • Published : 2012.03.30

Abstract

Modern society is experiencing a variety of crimes, and to prevent crime is being studied. Existing studies related to the crime of crimes that occur on spatial analysis and geographic information, or to analyze the type of criminal offense of studies have been conducted, However the existing studies of the geographical and psychological crime that occurs throughout the study area and by analyzing the motives for the crime prevention research is the most. In this paper, we introduce Markov processor model for predicting the crime is present. Of several crimes, murder, government official crimes, the incidence of violent crime has occurred over time by using the predicted incidence of crime. Presented in this paper, predictive modeling is used in a crime occurred in the average duration of the overall average number of crimes that occurred in the one-year average, which recently labeled as the average prediction was compared to if you can increase the likelihood, recent average to apply to increase the probability of the prediction that crime have been investigated.

현대 사회는 다양한 범죄들이 발생하고 있고, 범죄를 예방하기 위한 연구가 진행되고 있다. 기존의 범죄에 관련된 연구들은 범죄가 발생하는 공간과 지리정보를 분석하거나, 범죄자들의 범죄 유형을 분석하는 연구들이 진행되어 왔다. 그러나 기존의 연구들은 지리적, 심리학적인 연구를 통해 범죄가 발생하는 지역과 동기들을 분석하여 범죄를 예방하기 위한 연구들이 대부분이다. 본 논문에서는 마코프 프로세서를 도입하여 범죄를 예측하기 위한 모델링을 제시한다. 여러 범죄 중 살인, 공무원 범죄, 폭력의 범죄 발생 건수를 사용하여 시간에 따른 범죄 발생 건수를 예측하였다. 본 논문에서 제시한 범죄 예측 모델링에서 사용될 범죄 발생 평균값에 범죄가 발생한 기간에 발생한 범죄 발생 건수의 전체 평균값, 1년 평균값, 최근 평균값으로 분류하여 어느 것이 예측 확률을 높일 수 있는 지 비교하였고, 최근 평균값을 적용하는 것이 범죄 발생 예측확률을 높일 수 있음을 확인하였다.

Keywords

References

  1. Brown, M.A., "Modelling the Spatial Distribution of Suburban Crime," Economy Geography, Vol. 58, No3, pp. 247-261, July 1982. https://doi.org/10.2307/143513
  2. Kamber, T., Mollenkopt, H., and Ross, A. "Crime, Space, and Place : An Analysis of Crime Patterns in Brooklyn", inn Goldsmith V., Mguire G., Mollenkopf, H. and Ross, A.(eds.), Analyzing Crime Patterns: Frontiers of Practice Sage, pp121-136, 2000.
  3. Hwang Sun-Young, Hwang Chul-sue, "The Spatial Pattern Analysis Of Urban Crimes Using GIS : The Case of Residential Burglary", Journal of Korea Planners Association, Vol 38, No1, pp 53-56, 2, 2003.
  4. Park Cheol-Hyun, "Specialization in Criminal Career : Markov-Chain Analysis" Korean Criminological Review, pp. 243-273, 3, 2003.
  5. Charles M. Grinstead, "Introduction to Probability: Second Revised Edition", American Mathematical Society, pp405-406, 1997.
  6. Young-Gab Kim, Young-kyo Baek, Hoh Peter In, Doo-Kwon Baik "A Probabilistic Model of Damage Propagation based on the Markov Process" Journal of KIISE, Vol33, No8, pp.524-535, 8. 2006.
  7. Jung-Min Park, Koo-Rack Park, "A Study on the Prediction of Crime Probability by month using Markov Chains", Journal of The Korea Knowledge Information Technology Society, 2011. 2, Vol 6, No 1, pp. 69-77.
  8. Seung-Hun Lee, Byeong-Sup Moon, Bum-Jin Park , "The Bus Delay Time Prediction Using Markov Chain", The Journal of The Korea Institute of Intelligent Transport Systems, pp.1-10, 6. 2009.
  9. Ha Chen-Soo, Han Seok-Youn, "Reliability Evaluation of AGT Vehicle System Using Markov Chains" 2003 Autumn Conference & Annua Meeting of the Korean Society for Railway, pp 91-96, 10, 2004.
  10. Kim Young-Jin, Park Cheol-Soo, "Prediction of Occupant"s Presence in Residential Apartment Buildings using Markov Chain" Korea Institute of Architectural Sustainable Environment and building System. 2008 autumn conference, pp116-121, 2008.