DOI QR코드

DOI QR Code

New polymorphic microsatellite markers in the Korean mi-iuy croaker, $Miichthys$ $miiuy$, and their application to the genetic characterization of wild and farmed populations

  • An, Hye-Suck (New Strategy Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Eun-Mi (New Strategy Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Jang-Wook (New Strategy Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Dae-Jung (New Strategy Research Center, National Fisheries Research and Development Institute) ;
  • Kim, Yi-Cheong (New Strategy Research Center, National Fisheries Research and Development Institute)
  • Received : 2011.03.10
  • Accepted : 2011.06.13
  • Published : 2012.02.28

Abstract

Eighteen new polymorphic microsatellite markers were developed for the Korean mi-iuy croaker ($Miichthys$ $miiuy$, Perciformes, Sciaenidae), and allelic variability was compared between a wild population in Mokpo, Korea, and a hatchery population in Tongyeong, Korea. All loci were amplified readily and demonstrated allelic variability, with the number of alleles ranging from 5 to 37 in the wild population, and from 4 to 12 in the farmed population. The average observed and expected heterozygosities were estimated, respectively, to be 0.74 and 0.78 in the hatchery population samples, and 0.79 and 0.86 in the wild samples. These results indicate lower genetic variability in the hatchery population compared with the wild population, and significant genetic differentiation between the wild population and the hatchery samples ($F_{ST}$=0.058, P<0.001). These microsatellite loci may be valuable for future population genetic studies, monitoring changes in the genetic variation within stocks in a commercial breeding program, conservation genetics, and molecular assisted selective breeding of the mi-iuy croaker in the future.

Keywords

References

  1. Allendorf FW, Phelps SR. 1980. Loss of genetic variation in a hatchery stock of cutthroat trout. Trans Am Fish Soc. 109:537-543. https://doi.org/10.1577/1548-8659(1980)109<537:LOGVIA>2.0.CO;2
  2. Allendorf FW, Ryman N. 1987. Genetic management of hatchery stocks. In: Ryman N, Utter F, editors. Population genetics and fishery management. Seattle, WA: Washington Sea Grant. p. 141-159.
  3. Ahn D-H, Park M-H, Jung J-H, Oh M-J, Kim SH, Jung JW, Min G-S. 2011. Isolation and characterization of microsatellite loci in the Korean crayfish, Cambaroides similis and application to natural population analysis. Anim Cells Syst. 15:37-43. https://doi.org/10.1080/19768354.2011.555137
  4. An HS, Kim M-J, Hong SW. 2008. Genetic diversity of rock bream Oplegnathus fasciatus in Southern Korea. Genes Genom. 30:451-459.
  5. An HS, Park JY, Kim M-J, Lee EY, Kim KK. 2009. Isolation and characterization of microsatellite markers for the heavily exploited rockfish Sebastes schlegeli, and crossspecies amplification in four related Sebastes spp. Conserv Genet. 10:1969-1972. https://doi.org/10.1007/s10592-009-9870-8
  6. Asahida T, Kobayashi T, Saitoh K, Nakayama I. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentrations of urea. Fish Sci Tokyo. 62:727-730. https://doi.org/10.2331/fishsci.62.727
  7. Chan W, Bathia U, Carlsson D. 1974. Sciaenidae. In: Fischer W, Whitehead PJP, editors. FAO species identification sheets for fishery purposes. Eastern Indian Ocean (Fishing Area 57) and Western Central Pacific (Fishing Area 71) Vol. 3. Rome: FAO.
  8. Carleton KL, Streelman JT, Lee BY, Garnhart N, Kidd M, Kocher TD. 2002. Rapid isolation of CA microsatellites from the tilapia genome. Anim Genet. 33:140-144. https://doi.org/10.1046/j.1365-2052.2002.00817.x
  9. Desvignes JF, Laroche J, Durand JD, Bouvet Y. 2001. Genetic variability in reared stocks of common carp (Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture. 194:291-301. https://doi.org/10.1016/S0044-8486(00)00534-2
  10. DeWoody JA, Avise JC. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol. 56:461-473. https://doi.org/10.1111/j.1095-8649.2000.tb00748.x
  11. El Mousadik A, Petit RJ. 1996. High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor Appl Genet. 92:832-839. https://doi.org/10.1007/BF00221895
  12. Excoffier L, Laval G, Schneider S. 2005. ARLEQUIN version 3.0. An integrated software package for population genetics data analysis. Evol Bioinform Online. 1:47-50.
  13. FAO. 1993. Report of the expert consultation on utilization and conservation of aquatic genetic resources. Food and Agriculture Organization of the United Nations, Rome, FAO. Fish Rep. 491:1-58.
  14. Fritzner NG, Hansen MM, Madsen S, Kristiansen K. 2001. Use of microsatellite markers for identification of indigenous brown trout, Salmo trutta L., in a geographical region heavily influenced by stocked domesticated trout. J Fish Biol. 58:1197-1210.
  15. Fujio Y, Sasaki N, Sasaki M, Koganezawa A. 1985. Genetic aspects of natural and released populations of plaice. Bull Tohoku Reg Fish Res Lab. 47:51-57.
  16. Gardner MG, Cooper SJB, Bull CM, Grant WN. 1999. Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure. J Hered. 90:301-304. https://doi.org/10.1093/jhered/90.2.301
  17. Goudet J. 2001. FSTAT version 2.9.3. A program to estimate and test gene diversities and fixation indices. Available from: http://www.unil.ch/izea/softwares/fstat.html.
  18. Hamilton MB, Pincus EL, DiFiore A, Fleischer RC. 1999. Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. BioTechniques. 27:500-507.
  19. Hansen MM. 2002. Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Mol Ecol. 11:1003-1015. https://doi.org/10.1046/j.1365-294X.2002.01495.x
  20. Launey S, Barre M, Gerard A, Naciri-graven Y. 2001. Population bottleneck and effective size in Bonamia ostreae-resistant populations of Ostrea edulis as inferred by microsatellite markers. Genet Res Camb. 78:259-270. https://doi.org/10.1017/S0016672301005353
  21. Li Q, Park C, Kijima A. 2002. Isolation and characterization of microsatellite loci in the Pacific abalone, Haliotis discus hannai. J Shell Res. 212:811-815.
  22. Li Q, Park C, Endo T, Kijima A. 2004. Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone (Haliotis discus hannai). Aquaculture 235:207-222. https://doi.org/10.1016/j.aquaculture.2003.12.018
  23. Rice WR. 1989. Analyzing tables of statistical tests. Evolution. 43:223-225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x
  24. Sekino M, Hara M, Taniguchi N. 2002. Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture. 213:101-122. https://doi.org/10.1016/S0044-8486(01)00885-7
  25. Slatkin M, Excoffier L. 1996. Testing for linkage disequilibrium in genotypic data using the EM algorithm. Heredity. 76:377-383. https://doi.org/10.1038/hdy.1996.55
  26. Spencer CC, Neigel JE, Leberg PL. 2000. Experimental evalution of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol. 9:1517-1528. https://doi.org/10.1046/j.1365-294x.2000.01031.x
  27. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 4:535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  28. Vuorinen J. 1984. Reduction of genetic variability in a hatchery stock of brown trout, Salmo trutta. J Fish Biol. 24:339-348. https://doi.org/10.1111/j.1095-8649.1984.tb04805.x
  29. Wang RX, Xu TJ, Sun YN, He GY. 2010. Polymorphic microsatellite loci from two enriched genomic libraries for the genetic analysis of the miiuy croaker, Miichthys miiuy (Sciaenidae). Genet Mol Res. 9:931-934. https://doi.org/10.4238/vol9-2gmr806
  30. Weir BS, Cockerham CC. 1984. Estimating F-Statistics for the analysis of population structure. Evolution. 38:1358-1370.
  31. Yokoyama E, Sakamoto T, Sugaya T, Kitada S. 2006. Six polymorphic microsatellite loci in the Japanese Spanish mackerel, Scomberomorus niphonius. Mol Ecol Notes. 6:323-324. https://doi.org/10.1111/j.1471-8286.2005.01217.x
  32. Yue GH, Li Y, Chen F, Lim LC, Orban L. 2004. Monitoring the genetic diversity of three Asian arowana (Scleropages formosus) captive stocks using AFLP and microsatellites. Aquaculture. 237:89-102. https://doi.org/10.1016/j.aquaculture.2004.04.003
  33. Zhan AB, Bao ZM, Hu XL, Hui M, Wang ML, Peng W, Zhao HB, Hu JJ. 2007. Isolation and characterization of 150 novel microsatellite markers for Zhikong scallop (Chlamys farreri). Mol Ecol Notes. 7:1015-1022. https://doi.org/10.1111/j.1471-8286.2007.01760.x

Cited by

  1. Domestication of Marine Fish Species: Update and Perspectives vol.3, pp.4, 2012, https://doi.org/10.3390/jmse3041227