VOL.25 NO.1: 001-010 (2012)

하이드로젤에 탑재한 牛膝 추출물의 효과적인 파골세포 분화 억제 작용

경희대학교 한의과대학 한방부인과 교실 최진영, 이창훈, 장준복, 이경섭, 이진무

ABSTRACT

Inhibitory Effects of Achyranthis Radix Extract Mixed with Hydrogel on Osteoclast Differentiation

Jin-Young Choi, Chang-Hoon Lee, Jun-Bock Jang, Kyung-Sub Lee, Jin-Moo Lee Dept. of Oriental Gynecology, college of Oriental Medicine, Kyung-Hee University

Purpose: This study was conducted to evaluate the inhibitory effect of Achyranthis Radix extract(ARE) loaded hydrogel on osteoclast differentiation.

Methods: MTT-assay was performed to estimate cytotoxicity of ARE, Achyranthis Radix-alginate hydrogel disk(ARHD) in bone marrow macrophages stimulated(BMMs) with human receptor activator of nuclear factor-kB ligand(RANKL), human macrophage-colony stimulating factor(M-CSF). Tartrate resistant acid phosphatase staining and RT-PCR were performed to know the inhibitory effect on osteoclast differentiation. Reactive oxygen species and actin ring formation were analysed to observe the effect of ARHD.

Results: ARE has no cytotoxicity at the concentration of 0.1 mg/m ℓ or lower. ARE decreased the number of TRAP positive cells in RANKL, M-CSF stimulated BMMs and the gene expression. ARHD has no cytotoxicity at the concentration of 10 μ g/m ℓ (24, 48hours), 50 μ g/m ℓ (24 hours). ARHD restrained the synthesis of reactive oxygen species and the formation of actin ring.

Conclusions: Achyranthis Radix has the inhibitory effect of osteoclast differentiation and bone resorption. Further studies are needed to treat osteoporosis by Achyranthis Radix.

Key Words: Achyranthis Radix, Osteoclast differentiation, Hydrogel, RANKL

교신저자(이진무): 서울특별시 강동구 상일동 149번지 경희대학교 동서신의학병원 한방부인과 전화: 02-440-6230 팩스: 02-440-7143 이메일: hanbang62@paran.com

I. 緒 論

골다공증은 고령층 인구가 당면한 가장 중요한 질병 중 하나이다. 여성은 폐경을 전후하여 에스트로겐이 부족해지고이는 파골세포의 apoptosis 감소, 조골세포의 apoptosis 증가를 가져와 폐경기 골다공증 발병의 원인이 된다^{1,2)}.

파골세포(osteoclast)는 골흡수에 관여하는 다핵세포이다. 골의 항상성은 새로운 골기질을 형성하는 조골세포와 오래된 골기질을 흡수하는 파골세포의 적절한 균형에 의해 유지된다. 골다공증은 이두 세포 사이의 불균형에 의해 골의 흡수가 골의 형성을 초과하여 발생한다³⁻⁵⁾.

한의학적으로 骨은 腎主骨, 腎生骨髓로써 腎과 밀접한 관련을 갖는다⁶. 골다 공증은 骨痺, 骨痿 등의 병증과 유사성을 찾을 수 있고, 腎의 盛衰와 관련되어腎虛로 辨證할 수 있다⁷⁾. 갱년기 여성의 근본 병인 병기 역시 腎虛이다⁸⁾.

牛膝(Achyranthis Radix)은 비름과 (Amaranthaceae)에 속한 다년생 초본의 뿌리로 藥性은 平 無毒, 味는 苦酸, 歸經은 肝, 腎이며 효능은 補肝腎, 强筋骨, 散瘀血, 消癰腫이다⁹⁾. 최근 牛膝의 파골 세포 분화 억제에 관한 연구¹⁰⁾는 골다공증 치료에 관한 한의학적 접근을 제시하고 있다.

이에 저자는 牛膝의 파골세포 분화 억제 작용 및 牛膝의 지속적인 적용을 위해 하이드로젤에 탑재한 牛膝-하이드로젤 지지체의 세포 독성 및 ROS, 골 재흡수에 미치는 영향을 관찰하여 유의한결과를 얻었기에 보고하는 바이다.

Ⅱ. 實驗

1. 材料

1) 牛膝 추출물

비름과 (Amaranthaceae)에 속하는 多年生 草本인 쇠무릅 Achyranthes japonica Nakai의 뿌리 (Achyranthis Radix)를 시료:3차증류수=1:10의 비율로 3시간정도약탕기에서 추출한 후 filtering하고 Freeze dryer로 물을 제거하여 제조한 한국식물추출물은행의 제품 (CW02-083)을 구매하여 멸균된 3차 증류수로 희석하여 0.22 세 필터 (Millopore Carrigtwohill, Ireland)에 여과하여 4 ℃에 보관하였으며 생약추출물은 용액제조 후 15일 이내에 사용하였다.

2) 시 약

Human receptor activator of nuclear factor-kB ligand (이하 RANKL)과 Human macrophage-colony stimulating factor (°) 하 M-CSF)는 Peprotech 사(London, UK) 에서 구입하였다. Tartrate resistant acid phosphatase (이하 TRAP) staining solution 은 Sigma Aldrich사 (St. Louis, MO, USA) 에서 구입하였으며, a-minimum essential medium (이하 a-MEM), 10% Fetal bovine serum (이하 FBS), antibiotic, Dulbecco's Phosphate-Buffered Saline (이라 DPBS) 는 Gibco사 (Rockville, MD, USA)에서 구입하였으며 1% Triton X-100는 Sigma Chemical Co. (St. Louis, MO, USA)에서 구입하였다. 또한 2',7'-dichlorofluorescein diacetate (DCFH), rhodamin-conjugated phalloidin & Molecular Probes (Eugene, OR, USA)에서 제품을 구입하였다.

3) 파골세포의 배양 및 분화

6주령의 수컷 ICR 생쥐를 희생 시킨후 antibiotic을 첨가한 a-MEM을 1 cc 주사기에 충전하여 경골 및 대퇴골에서 골수를 채취하였다. 채취한 골수세포에서 적혈구를 제거한 후 FBS과 M-CSF 30 ng/때를 첨가한 a-MEM배지에서 5% CO2, 95% 습도 및 37 ℃의 배양기조건으로 3일간 배양하였다. 배양 후 부착된 세포를 파골전구세포로서의 대식세포 (bone marrow macrophages, 이하 BMMs)로 사용하였다.

2. 方 法

1) 牛膝-alginate 하이드로젤 제작

Sodium alginate를 2 wt% DMEM에 24시간 300 rpm으로 충분히 용해하였고, calcium sulfate를 DPBS에 충분히 분산시켰다. 용해된 이 두 가지 용액인 2 wt% alginate solution과 calcium sulfate를 주사기에 연결하여 혼합하고 동시에 牛膝 추출물 10 μg/ml과 50 μg/ml를 첨가하여 상온에서 15분간 하이드로젤을 架橋시켰다. 架橋된 牛膝-alginate 하이드로젤 disk를 15 mm지름과 1 mm의 두 께를 가지는 disk로 제작하여 사용하였다.

2) 세포독성 측정

BMMs를 96-well plate에 1×104cells/well 로 분주하고 M-CSF 30 ng/ml를 처리한후 牛膝 추출물 0.01 mg/ml, 0.5 mg/ml, 0.1 mg/ml 및 1 mg/ml를 첨가하여 24, 48 시간 배양하였다. 10 μg/ml과 50 μg/ml 牛膝-하이드로젤 지지체를 이용하여 같은 방법으로 배양하였다. 그 후 각각의 well에 cell counting kit (CCK-8, Dojindo, Japan) 용액을 처리하고 2시간 동안 incubation한 후 ELISA microplate reader (Bio-Rad, Hercules, CA, USA)를 이용하여 405 nm에서 흡광도를 측정하였다. 세포독성 효

과는 시료를 첨가하지 않는 대조군에 대 한 백분율(%)로 표시하였다.

3) TRAP 활성 측정

BMMs를 48-well plate에 2×104cells/well 로 분주하고 RANKL 100 ng/ml와 M-CSF 30 ng/ml로 처리한 배지에 牛膝 추출물 10 μg/ml, 50 μg/ml 및 100 μg/ml를 맞추어 첨가하고 배양하였다. 3일 후 배양액을 교환한 후 추가로 2일을 더 배양하고 부착세포를 DPBS로 2회 세척한 후 1% Triton X-100으로 용해시킨 후 TRAP 용액으로 염색하여 보라색의 TRAP 양성세포를 파골세포로 인정하였다. 염색된 파골세포 중 핵이 3개 이상인 세포의 개수를 현미경에서 직접 관찰하여 확인후 통계 처리하여 그래프에 나타내었다.

4) Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) 분석

BMMs를 6-well plate에 1×105cells/well 로 분주하고 RANKL 100 ng/ml와 M-CSF 30 ng/ml로 처리한 배지에 牛膝 추출물 10 μg/ml, 50 μg/ml 및 100 μg/ml를 첨가 하고 5일 동안 배양 후 파골세포를 harvest 하여 RNA RNeasy kit (Qiagen, Valencia, CA, USA)를 이용하여 총 RNA를 분리 하였다. 추출한 RNA의 1 μg을 oligo-dT (Invitrogen, Carlsbad, CA, USA)를 사용 하여 cDNA로 합성하였다. 합성된 cDNA 를 PCR preMix (Bioneer, DaeJeon, Korea) 로 중합효소연쇄반응을 수행하였다. 중합 효소연쇄반응에 사용된 primer는 파골세 포 분화의 지표로 사용된 TRAP, GAPDH 유전자 부분을 주형으로 제작하였다. Primer 은 TRAP were 5'-ACT TCC CCA GCC CTT ACT ACC G-3' (sense) and 5'-TCA GCA CAT AGC CCA CAC CG-3' (antisense), and the Primers for GAPDH were 5'-ACT TTG TCA AGC TCA TTT CC -3' (sense) and 5'-TGC AGC GAA CTT TAT TGA TG -3' (antisense)와 같이 제작되었으며 증폭은 94 ℃ 30초, 57 ℃ 30초, 72 ℃ 30초로 30회 반응시킨 후 Ethidium bromide이 포함된 1% agarose gel에 전기영동을 걸어 분리하여 UV상에서 band를 관찰하였다.

5) Reactive oxygen species (ROS) 염색 BMMs를 24-well plate에 5×104cells/well 로 분주하고 RANKL 100 ng/ml, M-CSF 30 ng/ml 및 牛膝-하이드로젤 지지체 10 ng/ml 및 50 μg/ml를 첨가하여 같은 배양조건에서 1일 경과 후, 세포를 PBS로 세척하고 10uM DCFH-DA을 30분 동안처리하였다. 3번의 세척 과정을 거친 후 DCF의 형광은 confocol laser scanning microscopy로 관찰하였다.

6) Actin-ring 염색

BMMs을 24-well plate에 5×104cells/well 로 분주하고 RANKL 100ng/ml, M-CSF 30 ng/ml를 처리하여 파골 세포 분화를 6일간 유도시켰다. 그 후 牛膝-하이드로 젤 지지체 10 μg/ml 및 50 μg/ml를 첨가하여 1일 동안 배양한 후 세포를 3.7% formaldehyde에 10분간 고정하고 PBS로 세척 후에 rhodamin-conjugated phalloidin을 처리하여 30분간 배양하였다. Actin-ring 형성은 형광현미경 Olympus IX71-F32PH모델을 사용하여 관찰하였다.

7) 통계분석

실험결과에 대한 통계처리는 SPSS (Stastical Package for the Socail Sciences, version 13.0, SPSS INC. IL)을 이용하였다. 실험군과 대조군의 비교는 one-way analysis of variances (ANOVA)를 사용하였고, p<0.05일 때 통계적으로 유의한 차이가 있다고 판정하였다.

Ⅲ. 結果

1. 牛膝 추출물(Achyranthis Radix extract, 이하 ARE)의 세포 독성 평가

BMMs에 대한 牛膝 추출물의 세포 독성을 측정한 결과 0.1 mg/ml 이하의 농도에서 세포 독성이 없는 것으로 평가되었다(Table 1, Fig. 1).

Table 1. Cytotoxicity Test of ARE in RANKL, M-CSF Stimulated BMMs for 24, 48 Hour Incubation

ARE Concentration	Time	Cell
(mg/mℓ)		Viability
Control	24hr	100.00±6.48
	48hr	100.00±2.58
0.01	24hr	100.87±6.82
	48hr	98.99 ± 1.66
0.1	24hr	102.27±1.93
	48hr	97.34±3.82
0.5	24hr	67.21±2.62*
	48hr	50.22±6.10*
1	24hr	40.40±2.00*
	48hr	18.67±2.57*

Values are the mean±SD of the four independent experiments

* Statistical significances were tested by ANOVA.

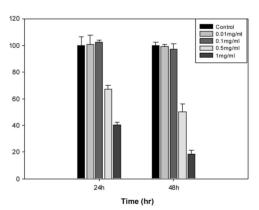


Fig. 1. Cytotoxicity Test of ARE in RANKL, M-CSF Stimulated BMMs for 24, 48 Hours Incubation.

2. 牛膝 추출물에 의한 파골세포 분화 억제

1) TRAP (+) cell counting

TRAP 염색 후 TRAP(+) cell을 측정한 결과 대조군 139.33±13.50에 비해, 10 mg/ ml군 57.67±7.64, 50 mg/ml군 25.00±5.29, 100 mg/ml군 9.67±2.52로 통계적으로 유 의한 파골세포 분화 억제 효과를 나타냈 다(Table 2, Fig. 2).

Table 2. Effects of ARE on the Formation of TRAP(+) Cell in RANKL, M-CSF Stimulated BMMs.

ARE Concentration $(\mu g/m\ell)$	Cell count*
Control	139.33±13.50 ^a
10	$57.67 \pm 7.64^{\rm b}$
50	25.00 ± 5.29^{c}
100	9.67 ± 2.52^{c}

Values are the mean±SD of the three independent experiments

* Statistical significances were tested by ANOVA. The same letters indicate non-significant difference between groups based on Duncan's test.

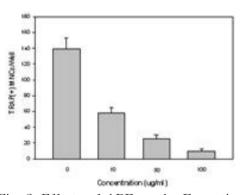


Fig. 2. Effects of ARE on the Formation of TRAP(+) Cell in RANKL, M-CSF Stimulated BMMs.

2) TRAP (+) cell gene expression 牛膝 추출물 농도별로 TRAP gene expression이 감소됨을 확인하였다(Fig. 3).

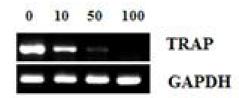


Fig. 3. Effects of ARE on the Formation of TRAP(+) Gene Expression in RANKL, M-CSF Stimulated BMMs.

3. 牛膝-alginate 하이드로젤 disk (Achyranthis Radix-alginate hydrogel disk, 이하 ARHD)의 세포 독성 평가

BMMs에 대한 牛膝-alginate 하이드로 젤 disk의 세포 독성을 측정한 결과 10 μ g/ml (24, 48시간), 50 μ g/ml (24시간) 에서 세포 독성이 없는 것으로 평가되었 다(Table 3, Fig. 4).

Table 3. Cytotoxicity Test of ARHD in RANKL, M-CSF Stimulated BMMs for 24. 48 Hours Incubation

ARHD Concentration(μg/mℓ)	Time Cell Viability
Control	24hr 100.00±8.68
	48hr 100.00±3.05
10	24hr 92.68±2.82
	48hr 102.50±3.75
50	24hr 91.48±5.47
	48hr 89.97±3.36*

Values are the mean±SD of the four independent experiments

* Statistical significances were tested by ANOVA.

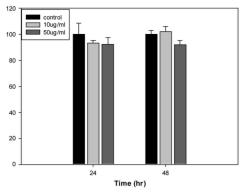


Fig. 4. Cytotoxicity Test of ARHD in RANKL, M-CSF Stimulated BMMs for 24, 48 Hours Incubation.

4. 牛膝-alginate 하이드로젤 disk의 ROS 억제

牛膝-alginate 하이드로젤 disk 10 μg/ml, 50 μg/ml에서 농도 의존적으로 ROS 생성이 억제됨을 확인하였다(Fig. 5).

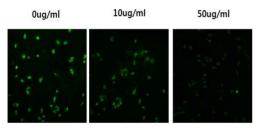


Fig. 5. Effects of ARHD on ROS Production in RANKL, M-CSF Stimulated BMMs.

5. 牛膝-alginate 하이드로젤 disk의 bone resorption 억제

Actin ring 염색을 실시한 결과 牛膝 -alginate 하이드로젤 disk 10 μ g/㎡, 50 μ g/㎡에서 actin ring 형성이 억제됨을 확인하였다(Fig. 6).

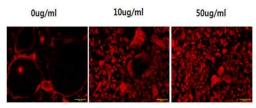


Fig. 6. Effects of ARHD on Actin Ring Formation in RANKL, M-CSF Stimulated BMMs.

Ⅳ. 考 察

폐경기 여성에 있어 에스트로겐의 감소는 퇴행성 골다공증의 가장 주요한 원인이다¹¹⁾. 에스트로겐은 파골세포 분화및 골의 재흡수 작용을 억제하여 골다공증 발생을 막는다^{12,13)}. 따라서 호르몬 대체 요법은 부작용¹⁴⁾에도 불구하고 폐경기 여성의 골다공증 및 그로 인한 골절예방의 명확한 치료지침이 된다¹⁵⁾.

일생동안 골은 지속적으로 재흡수와 합성을 통해 remodeling 과정을 겪는다. 파골세포는 단핵세포 전구체의 융합으로 형성되는 monocyte/macrophage 계에 속하는 다핵세포의 일종으로 골의 재흡수를 수행한다. 파골세포 분화 과정을 매개하는 가장 중요한 것은 TNF-related activation-induced cytokine (TRANCE) 인 RANKL과 polypeptide 성장 인자인 colony-stimulating factor-1 (CSF-1)이다 ^{16,17)}. 따라서 RANKL 신호 과정의 각단계별 차단을 통한 과도한 파골세포 형성의 억제는 골다공증에 대한 치료적 접근을 가능하게 할 것이다.

牛膝은 神農本草經¹⁸⁾에 "牛膝, 味苦酸, 主寒濕痿痺, 四肢拘攣, 膝痛不可屈伸, 逐 血氣傷, 熱, 火, 爛, 墮胎. 久服輕身耐老. 一名百倍 生川谷"이라 처음 수재되었다. 懷牛膝(Achyranthes bidentata), 土牛膝 (Achyranthes japonica)로 나누어지며 각 神肝腎 强筋骨과 活血祛瘀하는 효능이 있다. 현재 대한약전에 수록되어 있는 것은 土牛膝(쇠무릎)이다¹⁹⁾.

牛膝은 신경보호작용²⁰⁾, 항암 효과²¹⁾, 항체 증강 효과²²⁾, 항통각-항염증 효과²³⁾, 항산화 효과²⁴⁾, 항균 효과²⁵⁾, 류마티스 관절염 증상 완화 작용²⁶⁻²⁸⁾ 등이 다양하게 알려져 있다. 골다공증 관련해서는 골아세포 증식²⁹⁾, 골밀도 증가³⁰⁾, osteoprotection³¹⁾, 천연물의 파골세포 억제³²⁾ 효과가 있다. 이³³⁾는 약 159가지 식물 생약 중 우슬이 파골세포 분화 억제에 있어 가장 우수함을 밝혔다. 이에 기반하여 RANKL, M-CSF로 자극한 BMMs에 牛膝 추출물 및 牛膝 추출물의 지속적인 적용이 가능한 牛膝 -alginate 하이드로젤 disk의 파골세포 분화 억제 효과에 대해 실험하였다.

牛膝의 세포 독성여부를 확인하기 위해 牛膝 추출물에서의 cell viability를 살펴본 결과 牛膝 추출물 0.5 mg/ml 이상에서 24, 48시간 배양시 유의한 세포 독성이 나타났다. 따라서 본 실험에서 사용할 牛膝 추출물의 농도를 10, 50, 100 μ g /ml로 선택하여 실험을 진행하였다.

TRAP은 파골세포에 나타나는 골분해 효소로 ATP, nitrophenyl phosphate 존재 하에 활성을 나타내어 파골세포의 분화 정도를 측정할 수 있는 지표 효소이다. TRAP은 성숙한 파골세포에서 발현되는 것으로 TRAP(+) cell은 파골세포분화 여부를 판단하는 기준으로 이용될수 있다³⁴⁾. 牛膝의 파골 세포 억제 효과를 확인하기 위해 TRAP 염색을 시행한결과 牛膝 추출물 10, 50, 100 μg/毗를 첨가한 군은 牛膝 추출물 처리를 하지

않은 군에 비해 각각 41.4%, 17.9%, 6.9% 통계적으로 유의한 감소를 나타내었다. 이는 김 등¹⁰⁾이 밝힌 우슬의 유의한 파골세포 억제와 비슷한 결과이다. 또한 TRAP gene expression의 감소를 RT-PCR로 확인하였다.

약물의 효과를 지속적으로 발현할 수 있으며, 국소부위 처리에 유용한 牛膝 -alginate 하이드로젤 disk를 제작 후 세포 독성 여부를 확인하였다. 그 결과 牛膝-alginate 하이드로젤 disk 50 μ g/ml 군에서 48시간 배양 시 세포 독성을 나타냈다.

파골세포는 ROS 생성을 통하여 분화 촉진을 유도한다. 이는 파골세포 분화 시 TRAP 이 활성화되면서 TRAP의 redox-active iron이 hydrogen peroxide와 반응하여 ROS를 생산하기 때문이다³⁵⁾. 牛膝-alginate 하이드로젤 disk의 파골세포 분화 억제 작용을 알아보기 위해, ROS 생성을 측정한 결과 농도 의존적으로 억제되었다. 이는 牛膝-alginate 하이드로젤 disk가효과적으로 파골 세포 분화 억제함을 나타낸다.

파골세포 표면의 actin ring 구조는 필수적이며 이를 통해 골기질을 흡수한다³⁶⁾. 파골세포가 분화하면 그 크기가 거대해지고 표면이 actin ring을 형성하여 골흡수 과정에 관여하게 된다. 牛膝-alginate하이드로젤 disk 처리군에서 actin ring형성이 억제됨을 확인하였다. 이는 牛膝-alginate 하이드로젤 disk가 골 흡수 과정에 관여하여 파골세포 분화를 억제함을 의미한다.

이상의 실험 결과 牛膝 추출물은 세포 독성을 나타내지 않는 범위에서 파골세 포 분화 억제 효과를 나타냈다. 또한 牛 膝-alginate 하이드로젤 disk 역시 세포 독성을 나타내지 않는 범위에서 ROS 발 생을 감소시켜 파골 세포의 분화를 억제 시키고, actin ring 구조를 붕괴시켜 골 흡수 과정의 억제에 관여함을 확인하였 다. 본 논문은 약물의 지속적 발현이 가 능한 하이드로젤 지지체를 사용한 최초 의 파골세포 억제 연구이며, 또한 ROS 지표를 확인하여 牛膝이 골흡수 과정에 관여함을 밝힌 점에서 의의가 있다. 그 러나 牛膝-alginate 하이드로젤 disk의 파골세포 분화 억제 작용을 TRAP staining 및 RT-PCR로써 확인하지 않은 한계를 갖고 있다. 향후 하이드로젤을 이용한 동물 실험 및 나아가 폐경기 골다공증에 있어 호르몬 대체 요법을 대신할 한약 치료에 대한 임상 연구가 이루어져야 할 것이다.

V. 結 論

牛膝 및 牛膝-alginate 하이드로젤 disk 가 파골세포 분화 및 활성 및 골의 재흡 수를 억제하는지 평가하기 위해, 파골세 포 분화, ROS, 골 재흡수에 미치는 영향 을 관찰하여 다음과 같은 결론을 얻었다.

- 1. 牛膝 추출물은 0.1 mg/ml 이하의 농도 에서 세포 독성이 없었다.
- 2. 牛膝 추출물 10 μg/ml, 50 μg/ml, 100 μg/ml은 TRAP(+) cell을 통계적으로 유의 하게 감소시켰다.
- 3. 牛膝 추출물 10 μg/ml, 50 μg/ml, 100 μg/ml 은 TRAP gene expression을 감소시켰다.
- 4. 牛膝-alginate 하이드로젤 disk는 10 μg/ml (24, 48시간), 50 μg/ml (24시간)에서

세포 독성이 없었다.

- 5. 牛膝-alginate 하이드로젤 disk 10 μg/ml,50 μg/ml에서 농도 의존적으로 ROS 생성을 억제하였다.
- 6. 牛膝-alginate 하이드로젤 disk 10 μg/ml, 50 μg/ml에서 actin ring 형성이 억제되었다.

□ 투 고 일 : 2012년 1월 26일□ 심 사 일 : 2012년 2월 1일□ 게재확정일 : 2012년 2월 7일

參考文獻

- Rigs BL, Khosla S, Melton III LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279-302.
- Manolagas SC. Brith and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21:115–37.
- 3. Steven LT. Bone resorption by osteoclasts. Science. 2000;289:1504–8.
- 4. Tamara A, Rik D. Interfering with bone remodelling. Nature. 2002;416: 686–7.
- 5. William JB, Scott S, David LL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.
- 6. 김동균, 류지윤, 이언정. 腎主骨에 관한 東西醫學的 考察. 대한한방내과학회지. 1991;12(2):26-9.
- 7. 김종환. 골다공증에 관한 문헌적 고찰 -주로 최근의 한의학적 임상 및 실험

- 논문을 중심으로. 1998;15(2):437-54.
- 8. 한의부인과학 교재 편찬위원회. 한의 부인과학. 서울:정담출판사. 2002:230.
- 9. 전국한의과대학 본초학교수 공편저. 본 초학. 서울:영림사. 2000:427.
- 10. 김주호 등. 牛膝의 파골세포 분화 억 제와 골흡수 억제효과. 대한본초학회 지. 2010;25(1):65-74.
- 11. Rigs BL, Khosla S, Melton III LJ. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res. 1998;13(5):763-73.
- 12. Takashi K et al. Estrogen inhibits bone resorption by directly inducing apoptosis if the bone-resorbing osteoclast. J Exp Med. 1997;4:489-95.
- 13. Shevde NK et al. Estrogen suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-jun repression. Natl Acad Sci USA. 2000; 97(14):7829-34.
- 14. Writing group for the women's health initiative investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the women's health initiative randomized controlled trial. JAMA. 2002;288(3):321–33.
- Nelson HD et al. Postmenopausal hormone replacement therapy: Scientific review. JAMA. 2002;288(7):872–81.
- 16. Lacey DL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast

- differentiation and activation. Cell. 1998;93:165-76.
- 17. Hisataka Yasuda et al. Osteoclast differentiation factor is a ligand for osteoprotegerin / osteoclastogenesis-inhibitory factor and is identical to TRANCE. RANKL. Natl Acad Sci USA. 1998;95:3597-602.
- 孫星衍,孫馮翼. 神農本草經. 北京:科學技術出版社. 1999:13.
- 19. 이영종, 박재상. 牛膝의 形態 감별에 관한 연구. 대한본초학회지. 2005;20(2): 77-82.
- 20. Shen H et al. Achyranthes bidentata polypeptides confer neuroprotection through inhibition of reactive oxygen species production, bax expression, and mitochondrial dysfunction induced by overstimulation of N-methyl-D-aspartate receptors. J Neurosci Res. 2010;88(3): 669-76.
- 21. Xiang DB, Li XY. Antitumor activity and immuno-potentiating actions of Achyranthes bidentata polysaccharides. Acta Pharmacol Sin. 1993;14(6):556-61.
- 22. Sun HX. Adjuvant effect of Achyranthes bidentata saponins on specific antibody and cellular response to ovalbumin in mice. Vaccine. 2006;24(17):3432-9.
- 23. Park HJ et al. The Anti-nociceptive and anti-inflammatory effect of Achyranthes Japonica Nakai. Korean Journal of oriental medicine. 2004;25(4):8-14.
- 24. 박재상, 성낙술, 이용종. 牛膝, 懷牛膝 및 川牛膝의 산화억제 효과 비교 연구. 대한본초학회지. 2007;22(4):155-67.
- 25. 정선미 등. 牛膝 추출물의 Clostridium

- difficile에 대한 항균 효과. 한국식품 과학회지. 2007;39(5):564-8.
- 26. 최기복 등. 류마티스 관절염 흰쥐에 서 수중 운동과 牛膝 추출물이 염증 및 통증 반응에 미치는 영향. 동의생 리병리학회지. 2009;23(1):113-20.
- 27. 김계엽 등. 류마티스 관절염에서 牛 膝과 전침자극의 항관절염 효과. 동 의생리병리학회지. 2007;21(2):425-31.
- 28. 장통영 박희수. 牛膝약침(牛膝藥鍼) 이 Rat의 Adjuvant 관절염(關節炎) 에 미치는 영향(影響). 대한한의학 회지. 2000;21(3):77-87.
- 29. 서은아, 문형철. 牛膝 추출물이 골아 세포 증식과 분화에 미치는 효과. 동 의생리병리학회지. 2004;18(6):1821-7.
- 30. 김은정 등. 골다공증 쥐에서 牛膝의 농도별 투여에 따른 골대사의 생화 학적 마커에 미치는 영향. 동의생리 병리학회지. 2007;21(4):967-72.
- 31. He CC et al. Osteoprotective effect of extract from Achyranthes bidentata in

- ovariectomized rats. J Ethnopharmacol. 2010;127:229–34.
- 32. 이효정 등. 천연물 추출물의 파골세포 분화억제 효과 검색. 한국식품과학회 지. 2005;37(6):997-1004.
- 33. 이준원. 생약의 파골 세포 분화 저해 활성 검색. 생약학회지. 2009;40(2): 83-8
- 34. Minkin C. Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int. 1982;34(3):285-90.
- 35. Jussi MH et al. Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem. 1999;274(33):22907-10.
- 36. Takuma M et al. Critical role of cortactin in actin ring formation and osteoclastic bone resorption. J Bone Miner Metab. 2006;24:368–72.