DOI QR코드

DOI QR Code

Toxicity Evaluation of 'Bt-Plus' on Parasitoid and Predatory Natural Enemies

기생성 및 포식성 천적에 대한 작물보호제 '비티플러스'의 독성 평가

  • Received : 2012.01.06
  • Accepted : 2012.02.06
  • Published : 2012.03.01

Abstract

Effect of a new crop protectant 'Bt-Plus' on natural enemies was analyzed in this study. Tested natural enemies included two parasitic species of $Aphidius$ $colemani$ and $Eretmocerus$ $eremicus$, and four predatory species of $Harmonia$ $axyridis$, $Orius$ $laevigatus$, $Amblyseius$ $swirskii$, and $Phytoseiulus$ $persimilis$. 'Bt-Plus' was formulated by combination of three entomopathogenic bacteria ($Xenorhabdus$ $nematophila$ (Xn), $Photorhabdus$ $temperata$ subsp. $temperata$ (Ptt), $Bacillus$ $thuringiensis$ (Bt)) and bacterial metabolite (BM). All three types of 'Bt-Plus' showed significantly higher toxicities against fourth instar $Plutella$ $xylostella$ larvae than Bt single treatment. Two types of bacterial mixtures ('Xn+Bt' and 'Ptt+Bt') showed little toxicity to all natural enemies in both contact and oral feeding assays. However, 'BM+Bt' showed significant toxicities especially to two predatory mites of $A.$ $swirskii$ and $P.$ $persimilis$. The acaricidal effects of different bacterial metabolites were evaluated against two spotted spider mite, $Tetranychus$ $urticae$. All six BM chemicals showed significant acaricidal effects. The BM mixture used to prepare 'Bt-Plus' showed a high acaricidal activity with a median lethal concentration at 218.7 ppm (95% confidence interval: 163.2 - 262.3). These toxic effects of bacterial metabolites were also proved by cytotoxicity test against Sf9 cells. Especially, benzylideneacetone, which was used as a main ingredient of 'BM+Bt', showed high cytotoxicity at its low micromolar concentration.

신작물보호제로 개발된 '비티플러스'의 천적에 대한 영향평가가 이뤄졌다. 분석된 천적은 두 종의 기생성 천적인 콜레마니진디벌($Aphidius$ $colemani$) 및 황온좀벌($Eretmocerus$ $eremicus$)과 네 종의 포식성 천적인 무당벌레($Harmonia$ $axyridis$), 애꽃노린재($Orius$ $laevigatus$), 지중해이리 응애($Amblyseius$ $swirskii$) 및 칠레이리응애($Phytoseiulus$ $persimilis$)를 포함했다. '비티플러스'는 세 가지 곤충병원세균($Xenorhabdus$ $nematophila$(Xn), $Photorhabdus$ $temperata$ subsp. $temperata$(Ptt), $Bacillus$ $thuringiensis$(Bt))과 세균 대사물질(BM)을 조합하여 개발되었다. 배추좀나방($Plutella$ $xylostella$) 4령충에 대해서 세 종류의 '비티플러스'('Xn+Bt', 'Ptt+Bt' 그리고 'BM+Bt') 모두는 Bt 단독에 비해 높은 살충력을 나타냈다. '비티플러스'의 천적에 대한 영향에서 세균배양액 혼합체('Xn+Bt' 또는 'Ptt+Bt')는 접촉독성 및 섭식독성 분석에서 모두 독성이 낮은 것으로 나타났다. 그러나 'BM+Bt'는 일부 독성을 보였으며, 특별히 지중해이리응애와 칠레이리응애에 대해서 높은 독성을 나타냈다. 이들 세균대사물질의 살비효과를 점박이응애($Tetranychus$ $urticae$)를 대상으로 분석하였다. 각 대사물질별로 상이한 살비력을 보인 가운데, '비티플러스'에 이용된 대사물질 복합체는 반수치사약량이 218.7 ppm(95% 신뢰구간: 163.2 - 262.3)으로 비교적 높은 살비효과를 나타냈다. 이들 물질의 독성은 Sf9 세포주에 대한 세포독성 분석을 통해 나타났다. 특별히 'BM+Bt' 제조에 사용된 주성분인 벤질리덴아세톤은 낮은 농도에서도 높은 세포독성을 보였다.

Keywords

References

  1. Adams, B.J. and K.B. Nguyen. 2002. Taxonomy and systematics. pp. 1-33. In Entomopathogenic nematology, ed. by R. Gaugler. CABI Publishing, New York.
  2. Aronson, A.I., W. Beckman and P.E. Dunn. 1986. Bacillus thurinigensis and related insect pathogens. Microbial. Rev. 50: 1-24.
  3. Atsumi, S., Y. Inoue, T. Ishizaka, E. Mizuno, Y. Yoshizawa, M. Kitami and R. Sato. 2008. Location of the Bombyx mori 175 kDa cadherin-like protein-binding site on Bacillus thuringiensis Cry1Aa toxin. FEBS J. 275: 4913-4926. https://doi.org/10.1111/j.1742-4658.2008.06634.x
  4. Baur, M.E. and D.J. Boethel. 2003. Effect of Bt-cotton expressing Cry1Ac on the survival and fecundity of two Hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol. Control 26: 325-332. https://doi.org/10.1016/S1049-9644(02)00160-3
  5. Bernal, J.S., J.G. Griset and P.O. Gillogly. 2002. Impacts of developing on Bt maize-intoxicated hosts on fitness parameters of a stem borer parasitoid. J. Entomol. Sci. 37: 27-40. https://doi.org/10.18474/0749-8004-37.1.27
  6. Bravo, A., S. Likitvivatanavong, S.S. Gill and M. Soberon. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
  7. Chen, M., J.Z. Zhao, H.L. Collins, E.D. Earle, J. Cao and A.M. Shelton. 2008. A critical assessment of the effects of Bt transgenic plants on parasitoids. PLoS One 3: e2284. https://doi.org/10.1371/journal.pone.0002284
  8. Cory, A.H., T.C. Owen, J.A. Barltrop and J.G. Cory. 1991. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Comm. 3: 207-212. https://doi.org/10.3727/095535491820873191
  9. Dunphy, G.B. and J.M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. Invertebr. Pathol. 58: 40-51. https://doi.org/10.1016/0022-2011(91)90160-R
  10. ffrench-Constant, R.H., N. Waterfield and P. Daborn. 2005. Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill. Elsevier, New York.
  11. Forst, S., B. Dedos, N. Boemare and E. Stackebrandt. 1997. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51: 47-72. https://doi.org/10.1146/annurev.micro.51.1.47
  12. Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
  13. Gomez, I., J. Snachez, R. Miranda, A. Bravo and M. Soberon. 2002. Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domains I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 513: 242-246. https://doi.org/10.1016/S0014-5793(02)02321-9
  14. Gomez, I., I. Arenas, I. Benitez, J. Miranda-Ríos, B. Becerril, G. Grande, J.C. Almagro, A. Bravo and M. Soberon. 2006. Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. J. Biol. Chem. 281: 34032-34039. https://doi.org/10.1074/jbc.M604721200
  15. Goolsby, J.A., M.A. Ciamperlik, B.C. Legaspi, J.C. Lepaspi and L.E. Wendel. 1998. Laboratory and field evaluation of exotic parasitoids of Bemisia tabaci (Gennandius) (Biotype "B") (Homoptera: Aleyrodidae) in the lower Rio Grande valley of Texas. Biol. Control 12: 127-135. https://doi.org/10.1006/bcon.1998.0624
  16. Heckel, D.G., L.J. Gahan, S.W. Baxter, J. Zhao, A.M. Shelton, F. Gould and B.E. Tabashnik. 2007. The diversity of Bt resistance genes in species of Lepidoptera. J. Invertebr. Pathol. 95: 192-197. https://doi.org/10.1016/j.jip.2007.03.008
  17. Hoddle, M.S., R.G. van Driesche, J.P. Sanderson and O.P.J.M. Mindenberg. 1998. Biological control of Bemisia argentifolii (Homoptera: Aleyrodidae) on poinsettia with inundative release of Eretmocerus eremicus (Hymenoptera: Aphelinidae): do release rate affect parasitism? Bull. Entomol. Res. 88: 47-58. https://doi.org/10.1017/S0007485300041547
  18. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
  19. Jung, S. 2006. Evaluation of integrated biological control using bacterial and viral pathogens. MS Thesis, Andong National University, Andong, Korea.
  20. Jung, S. and Y. Kim. 2006a. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environl. Entomol. 35: 1584-1589. https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
  21. Jung, S. and Y. Kim. 2006b. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39: 201-209. https://doi.org/10.1016/j.biocontrol.2006.07.002
  22. Jung, S. and Y. Kim. 2007. Potentiating effect of Bacillus thurigiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 100: 246-250. https://doi.org/10.1603/0022-0493(2007)100[246:PEOBTS]2.0.CO;2
  23. Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  24. Kim, H.Y., J.H. Kim, S.H. Kang, Y.H. Lee and M.Y. Choi. 2009. Biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on cucumber, using Amblyseius swirskii (Arari: Phytoseiidae). Kor. J. Appl. Entomol. 48: 355-359. https://doi.org/10.5656/KSAE.2009.48.3.355
  25. Kim, J.H., G.S. Lee, Y.H. Kim and K.J. Yoo. 2001. Species composition of Orius spp. (Hemiptera: Anthocoridae) and their seasonal occurrence on several plants in Korea. Kor. J. Appl. Entomol. 40: 211-217
  26. Kim, J.J., D.K. Seo and G.H. Kim. 2006. Evaluation of toxicity of 83 pesticides against aphid parasitoid, Aphidius colemani (Hymenoptera: Braconidae), and control effects of the green peach aphid, Myzus persicae with a combination of aphid parasitoid and pesticides. Kor. J. Appl. Entomol. 45: 217-226.
  27. Kwon, S. and Y. Kim. 2007. Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42: 72-76. https://doi.org/10.1016/j.biocontrol.2007.03.006
  28. Kwon, B. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41. https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
  29. Lee, S. 2012. Identification, synthesis, and biological activities of cyclic PY. MS Thesis, Andong National University, Andong, Korea.
  30. Moon, H.C., W. Kim, M.K. Choi, S.H. Kwon, Y.K. Shin, D.H. Kim and C.Y. Hwang. 2011. Biological control of cotton aphid by Aphidius colemani (Hymenoptera: Braconidae) in watermelon greenhouses. Kor. J. Appl. Entomol. 50: 79-82. https://doi.org/10.5656/KSAE.2011.03.0.011
  31. Moon, H.C., J.R. Lim, J. Kim, J. Ryu, B.R. Ko, D.H. Kim and C.Y. Hwang. 2006. Biological control of Tetranychus urticae by Phytoseiulus persimilis in eggplant greenhouse houses. Kor. J. Appl. Entomol. 45: 173-177.
  32. Nagai, K. 1991. Predatory characteristics of Orius sp. on Thrips palmi Karny, Tetranychus kanzawai Kishida, and Aphis gossypii Glover. Jpn. J. Appl. Entomol. Zool. 35: 269-274. https://doi.org/10.1303/jjaez.35.269
  33. Pacheco, S., I. Gomez, I. Arenas, G. Saab-Rincon, C. Rodriguez-Almazan, S.S. Gill, A. Bravo and M. Soberon. 2009. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a "pingpong" binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J. Biol. Chem. 284: 32750-32757. https://doi.org/10.1074/jbc.M109.024968
  34. Paik, C.H., G.H. Lee, C.Y. Hwang and S.J. Kim. 2010. Predatory response of the pirate bug, Orius sauteri Poppius (Heteroptera: Anthocoridae) on Frankliniella occidentalis, Aphis gossypii and Tetranychus urticae. Kor. J. Appl. Entomol. 49: 401-407. https://doi.org/10.5656/KSAE.2010.49.4.401
  35. Pardo-Lopez, L., I. Gomez, C. Rausell, J. Sanchez, M. Soberon and A. Bravo. 2006. Structural changes of the Cry1Ac oligomeric prepore from Bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Biochemistry 45: 10329-10336. https://doi.org/10.1021/bi060297z
  36. Park, J. and Y. Kim. 2011. Benzylideneacetone suppresses both cellular and humoral immune responses of Spodoptera exigua and enhances fungal pathogenicity. J. Asia Pac. Entomol. 14: 423-427. https://doi.org/10.1016/j.aspen.2011.06.001
  37. Park, S., M. Jun, W. Chun, J. Seo, Y. Yi and Y. Kim. 2010. Control effects of benzylideneacetone isolated from Xenorhabdus nematophila K1 on the diseases of red pepper plants. Res. Plant Dis. 16: 170-175. https://doi.org/10.5423/RPD.2010.16.2.170
  38. Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
  39. Pigot, C.R. and D.J. Ellar. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. 71: 255-281. https://doi.org/10.1128/MMBR.00034-06
  40. Rahman, M.M., H.L.S. Roberts, M. Sarjan, S. Asgari and O. Schmidt. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101: 2696-2699. https://doi.org/10.1073/pnas.0306669101
  41. Raymond, M. 1985. Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORS-TOM. Ser. Ent. Med. et Parasitol. 22: 117-121.
  42. Romeis, J., M. Meissle and F. Bigler. 2006. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 24: 63-71. https://doi.org/10.1038/nbt1180
  43. SAS Institute. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
  44. Seo, M.J. and Y.N. Yoon. 2000. The Asian ladybird, Harminia axyridis, as biological control agents: I. Predaceous behavior and feeding ability. Kor. J. Appl. Entomol. 39: 59-71.
  45. Seo, S. 2012. Chemical identification and biological characterization of phospholipase $A_2$ inhibitors synthesized by entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. MS Thesis, Andong National University, Andong, Korea.
  46. Seo, S. and Y. Kim. 2009. Two entomopathogenic bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 secrete factors enhancing Bt pathogenicity against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 38: 385-392.
  47. Seo, S. and Y. Kim. 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49: 241-249. https://doi.org/10.5656/KSAE.2010.49.3.241
  48. Seo, S. and Y. Kim. 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacteria (Xenorhabdus nematophila and Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50: 171-178. https://doi.org/10.5656/KSAE.2011.07.0.24
  49. Shrestha, S. and Y. Kim. 2009. Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua. Biosci. Biotechnol. Biochem. 73: 2077-2084. https://doi.org/10.1271/bbb.90272
  50. Shrestha, S. and Y. Kim. 2010. Differential pathogenicity of two entomopathogenic bacteria, Photorhabdus temperata subsp. temperata and Xenorhabdus nematophila against the red flour beetle, Tribolium castaneum. J. AsiaPac. Entomol. 13: 209-213.
  51. Stanley, D.W. and Y. Kim. 2011. Prostaglandins and their receptors in insect biology. Front. Endocrin. 2: 105.
  52. Stary, P. 1975. Aphidius colemani Vireck: its taxonomy, distribution and host range (Hymenoptera: Aphidiidae). Acta Entomol. Biochem. 72: 156-163.
  53. Tabashnik, B.E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39: 47-79. https://doi.org/10.1146/annurev.en.39.010194.000403
  54. Tunaz, H., Y. Park, K. Buyukguzel, J.C. Bedick, A.R. Nor Aliza and D.W. Stanley. 2003. Eicosanoids in insect immunity: bacterial infection stimulates hemocytic phospholipase $A_2$ activity in tobacco hornworms. Arch. Insect Biochem. Physiol. 52, 1-6. https://doi.org/10.1002/arch.10056
  55. Ward, N.C., K.D. Croft, I.B. Puddey and J.M. Hodgson. 2004. Supplementation with grape seed polyphenols results in increased urinary excretion of 3-hydroxyphenylpropionic acid, an important metabolite of proanthocyanidins in humans. J. Agric. Food Chem. 52: 5545-5549. https://doi.org/10.1021/jf049404r
  56. Yasunaga, T. 1997. The flower bug genus Orius Wolff (Heteroptera: Anthocoridae) from Japan and Taiwan. Part II. Appl. Entomol. Zool. 32: 379-386. https://doi.org/10.1303/aez.32.379
  57. Zhang, X., M. Candas, N.B. Griko, R. Taussig and L.A. Jr. Bulla. 2006. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 103: 9897-9902. https://doi.org/10.1073/pnas.0604017103