DOI QR코드

DOI QR Code

Chemical Pesticides and Plant Essential Oils for Disease Control of Tomato Bacterial Wilt

  • Lee, Young-Hee (Department of Horticultural Sciences, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Choi, Chang-Won (Department of Biology and Medicinal Science, Paichai University) ;
  • Kim, Seong-Hwan (Department of Microbiology and Institute of Basic Sciences, Dankook University) ;
  • Yun, Jae-Gill (Department of Horticultural Sciences, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Chang, Seog-Won (Korea Golf University) ;
  • Kim, Young-Shik (Department of Plant Science and Technology, Sangmyung University) ;
  • Hong, Jeum-Kyu (Department of Horticultural Sciences, Gyeongnam National University of Science and Technology (GNTech))
  • Received : 2011.10.25
  • Accepted : 2011.12.24
  • Published : 2012.03.01

Abstract

Efficacy of different control methods was evaluated for disease management of tomato bacterial wilt caused by $Ralstonia$ $solanacearum$. All six chemical pesticides applied to the bacterial suspension showed $in$ $vitro$ bactericidal activities against $R.$ $solanacearum$. Minimal inhibitory concentrations (MICs) of copper hydroxide (CH), copper hydroxide-oxadixyl mixture (CH+O), and copper oxychloride-dithianon mixture (CO+D) were all 200 ${\mu}g/ml$; MIC of copper oxychloride-kasugamycin (CO+K) mixture was 100 ${\mu}g/ml$; MICs of both streptomycin- validamycin (S+V) and oxine copper-polyoxine B mixture (OC+PB) were 10 ${\mu}g/ml$. Among these chemical pesticides, treatment of the detached tomato leaves with the 5 pesticides (1 mg/ml), except for OC+PB delayed early wilting symptom development caused by the bacterial inoculation ($10^6$ and $10^7$ cfu/ml). Four pesticides, CH, CH+O, CO+K and S+V, showed disease protection in pot analyses. Six plant essential oils, such as cinnamon oil, citral, clove oil, eugenol, geraniol and limonene, differentially showed their antibacterial activities $in$ $vitro$ against $R.$ $solanacearum$ demonstrated by paper disc assay. Among those, cinnamon oil and clove oil exert the most effective activity for protection from the wilt disease caused by the bacterial infection ($10^6$ cfu/ml). Treatment with cinnamon oil and clove oil also suppressed bacterial disease by a higher inoculum concentration ($10^7$ cfu/ml). Clove oil could be used for prevention of bacterial wilt disease of tomato plants without any phytotoxicity. Thus, we suggest that copper compounds, antibiotics and essential oils have potency as a controlling agent of tomato bacterial wilt.

Keywords

References

  1. Adaskaveg, J. E. and Hine, R. B. 1985. Copper tolerance and zinc sensitivity of Mexican strains of Xanthomonas campestris pv. vesicatoria, causal agent of bacterial spot of pepper. Plant Dis. 69:993-996. https://doi.org/10.1094/PD-69-993
  2. Adb-Alla, M. H. and Bashandy, S. R. 2008. Bacterial wilt and spot of tomato caused by Xanthomonas vesicatoria and Ralstonia solanacearum in Egypt. World J. Microbiol. Biotechnol. 24:291-292. https://doi.org/10.1007/s11274-007-9385-8
  3. Ahmed, H. A. M., Abdel-Razik, A. A., Hassan, M. H. A. and Khaled, S. A. 2010. Management of charcoal rot of sesame by seed soaking in medicinal plant extracts and hot water. Plant Pathol. J. 26:372-379. https://doi.org/10.5423/PPJ.2010.26.4.372
  4. Aysan, Y. and Sahin, F. 2003. Occurrence of bacterial spot disease, caused by Xanthomonas axonopodis pv. vesicatoria, on pepper in the eastern Mediterranean region of Turkey. New Dis. Rep. 7:3.
  5. Bajpai, V. K., Dung, N. T., Suh, H. J. and Kang, S. C. 2010. Antibacterial activity of essential oil and extracts of Cleistocalyx operculatus buds against the bacteria of Xanthomonas spp. J. Am. Oil Chem. Soc. 87:1341-1349. https://doi.org/10.1007/s11746-010-1623-9
  6. Carmeille, A., Prior, P., Kodja, H., Chiroleu, F., Luisetti, J. and Besse, P. 2006. Evaluation of resistance to race 3, biovar 2 of Ralstonia solanacearum in tomato germplasm. J. Phytopathol. 154:398-402. https://doi.org/10.1111/j.1439-0434.2006.01112.x
  7. Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla-Nakbi, A. B., Rouabhia, M., Mahdouani, K. and Bakhrouf, A. 2007. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 21:501-506. https://doi.org/10.1002/ptr.2124
  8. Choi, N. H., Choi, G. J., Jang, K. S., Choi, Y. H., Lee, S. O., Choi, J. E. and Kim, J. C. 2008. Antifungal activity of the methanol extract of Myristica malabarica fruit rinds and the active ingredients malabaricones against phytopathogenic fungi. Plant Pathol. J. 24:317-321. https://doi.org/10.5423/PPJ.2008.24.3.317
  9. Colin, K. C. and McCarter, S. M. 1983. Effectiveness of selected chemicals in inhibiting Pseudomonas syringae pv. tomato in vitro and in controlling bacterial speck. Plant Dis. 67:639-644. https://doi.org/10.1094/PD-67-639
  10. Cuppels. D. A. and Elmhirst, J. 1999. Disease development and changes in the natural Pseudomonas syringae pv. tomato populations on filed tomato plants. Plant Dis. 83:759-764. https://doi.org/10.1094/PDIS.1999.83.8.759
  11. Enfinger, J. M., McCarter, S. M. and Jaworski, C. A. 1979. Evaluation of chemicals and application methods for control of bacterial wilt of tomato transplants. Phytopathology 69:637-640. https://doi.org/10.1094/Phyto-69-637
  12. Frey, P., Prior, P., Marie, C., Kotoujansky, A., Trigalet-Demery, D. and Trigalet, A. (1994) Hrp- mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt. Appl. Environ. Microbiol. 60:3175-3181.
  13. Graham, J. and Lloyd, A. B. 1979. Survival of the potato strain (race 3) of Pseudomonas solanacearum in the deeper soil layers. Aust. J. Agricult. Res. 30:489-496. https://doi.org/10.1071/AR9790489
  14. Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X. and Sun, P. H. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol. Cont. 29:66-72. https://doi.org/10.1016/S1049-9644(03)00124-5
  15. Han, Y. K., Min, J. S., Park, J. H., Han, K. S., Kim, D. H., Lee, J. S. and Kim, H. H. 2009. Screening of tomato cultivars resistant to bacterial wilts. Res. Plant Dis. 15:198-201. https://doi.org/10.5423/RPD.2009.15.3.198
  16. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
  17. Islam, T. M. D. and Toyota, K. .2004. Suppression of bacterial wilt of tomato by Ralstonia solanacearum by incorporation of composts in soil and possible mechanisms. Microbes Environ. 19:53-60. https://doi.org/10.1264/jsme2.2004.53
  18. Ishikawa, R., Fujimori, K. and Matsuura, K. 1996. Antibacterial activity of validamycin A against Pseudomonas solanacearum and its efficacy against tomato bacterial wilt. Annu. Phytopathol. Soc. Jpn. 62:478-482. https://doi.org/10.3186/jjphytopath.62.478
  19. Isman, M. B. 2000. Plant essential oils for pest and disease management. Crop Protect. 19:603-608. https://doi.org/10.1016/S0261-2194(00)00079-X
  20. Jardine, D. J. and Stephens, C. T. 1987. Influence of timing of application and chemical on control of bacterial speck to tomato. Plant Dis. 71:405-408. https://doi.org/10.1094/PD-71-0405
  21. Ji, P., Momol, M. T., Olson, S. M., Pradhanang, P. M. and Jones, J. B. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89:497-500. https://doi.org/10.1094/PD-89-0497
  22. Jones, J. B., Stall, R. E. and Bouzar, H. 1998. Diversity among Xanthomonads pathogenic on pepper and tomato. Annu. Rev. Phytopathol. 36:41-58. https://doi.org/10.1146/annurev.phyto.36.1.41
  23. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693-695.
  24. Kishore, G. K., Pande, S. and Harish, S. 2007. Evaluation of essential oils and their components for broad-spectrum antifungal activity and control of late leaf spot and crown rot diseases in peanut. Plant Dis. 91:375-379. https://doi.org/10.1094/PDIS-91-4-0375
  25. Lazar-Baker, E. E., Hetherington, S. D., Ku, V. V. and Newman, S. M. 2011. Evaluation of commercial essential oil samples on the growth of postharvest pathogen Monilinia fructicola (G. Winter) Honey. Lett. Appl. Microbiol. 52:227-232. https://doi.org/10.1111/j.1472-765X.2010.02996.x
  26. Lee, S. D. and Cho, Y. S. 1996. Copper resistance and race distribution of Xanthomonas campestris pv. vesicatoria on pepper in Korea. Kor. J. Plant Pathol. 12:150-155.
  27. Liu, F., Wei, F., Wang, L., Liu, H., Zhu, X. and Liang, Y. 2010. Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol. Mol. Plant Pathol. 74:330-336. https://doi.org/10.1016/j.pmpp.2010.05.002
  28. Loreti, S., Fiori, M., de Simone, D., Falchi, G., Gallelli, A., Schiaffino, A. and Ena, S. 2008. Bacterial wilt, caused by Ralstonia solanacearum, on tomato in Italy. Plant Pathol. 57:368.
  29. Louwes, F. J., Wilson, M., Campbell, H. L., Cuppels, D. A., Jones, J. B., Shemaker, P. B., Sahin, F. and Miller, S. A. 2001. Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis. 85:481-488. https://doi.org/10.1094/PDIS.2001.85.5.481
  30. Marco, G. and Stall, R. E. 1983. Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitivity to copper. Plant Dis. 67:779-781. https://doi.org/10.1094/PD-67-779
  31. Muthukumar, A., Eswaran, A., Nakkeeran, S. and Sangeetha, G. 2010. Efficacy of plant extracts and biocontrol agents against Pythium aphanidermatum inciting chilli damping-off. Crop Protect. 29:1483-1488. https://doi.org/10.1016/j.cropro.2010.08.009
  32. Nakaho, K., Inoue, H., Takayama, T. and Miyagawa, H. 2004. Distribution and multiplication of Ralstonia solanacearum in tomato plants with resistance derived from different origins. J. Gen. Plant Pathol. 70:115-119. https://doi.org/10.1007/s10327-003-0097-0
  33. Paret, M. L., Cabos, R., Kratky, B. A. and Alvarez, A. M. 2010. Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Dis. 94:521-527. https://doi.org/10.1094/PDIS-94-5-0521
  34. Park, E. J., Lee, S. D., Chung, E. J., Lee, M. H., Um, H. Y., Murugaiyan, S., Moon, B. J. and Lee, S. W. 2007a. Micro-Tom-A model plant system to study bacterial wilt by Ralstonia solanacearum. Plant Pathol. J. 23:239-244. https://doi.org/10.5423/PPJ.2007.23.4.239
  35. Park, K., Paul, D., Kim, Y. K., Nam, K. W., Lee, Y. K., Choi, H. W. and Lee, S. Y. 2007b. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25. https://doi.org/10.5423/PPJ.2007.23.1.022
  36. Pinto, E., Vale-Siva, L., Cavaleiro, C. and Salgueiro, L. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 58:1454-1462. https://doi.org/10.1099/jmm.0.010538-0
  37. Pradhanang, P. M., Ji, P., Momol, M. T., Olson, S. M., Mayfield, J. L. and Jones, J. B. 2005. Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Dis. 89:989-993. https://doi.org/10.1094/PD-89-0989
  38. Pradhanang, P. M., Momol, M. T., Olson, S. M. and Jones, J. B. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 87:423-427. https://doi.org/10.1094/PDIS.2003.87.4.423
  39. Ranasinghe, L., Jayawardena, B. and Abeywickrama, K. 2002. Fungicidal activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et L. M. Perry against crown rot and anthracnose pathogens isolated from banana. Lett. Appl. Microbiol. 35:208-211. https://doi.org/10.1046/j.1472-765X.2002.01165.x
  40. Ritchie, D. F. and Dittapongpitch, V. 1991. Copper and streptomycin-resistant strains and host differentiated races of Xanthomonas campestris pv. vesicatoria in North Carolina. Plant Dis. 75:733-736. https://doi.org/10.1094/PD-75-0733
  41. Robert, D. P., Denny, T. P. and Schell, M. A. 1988. Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J. Bacteriol. 170:1445-1451. https://doi.org/10.1128/jb.170.4.1445-1451.1988
  42. Romero, A. M., Kousik, C. S. and Ritchie, D. F. 2001. Resistance to bacterial spot in bell pepper induced by acibenzolar-S-methyl. Plant Dis. 85:189-194. https://doi.org/10.1094/PDIS.2001.85.2.189
  43. Saad, A. T. and Abul Hassam, H. M. 2000. Pathogenesis and control of bacterial speck, Pseudomonas syringae pv. tomato, on tomato. EPPO Bulletin 30:341-345. https://doi.org/10.1111/j.1365-2338.2000.tb00907.x
  44. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. APS press, St Paul, USA.
  45. Scherf, J. M., Milling, A. and Allen, C. 2010. Moderate temperature fluctuations rapidly reduce the viability of Ralstonia solanacearum race 3, biovar 2, in infected geranium, tomato, and potato plants. Appl. Environ. Microbiol. 76:7061-7067. https://doi.org/10.1128/AEM.01580-10
  46. Seo, S. T., Lee, J. S., Park, J. H., Han, K. S. and Jang, H. I. 2004. Inhibitory effect of garlic extracts on some plant pathogens. Res. Plant Dis. 10:349-252. https://doi.org/10.5423/RPD.2004.10.4.349
  47. Soylu, E. M., Kurt, S. and Soylu, S. 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Inter. J. Food Microbiol. 143:183-189. https://doi.org/10.1016/j.ijfoodmicro.2010.08.015
  48. Soylu, E. M., Soylu, S. and Kurt, S. 2006. Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathoogia 161:119-128. https://doi.org/10.1007/s11046-005-0206-z
  49. Suk, J. K., Ipper, N. S., Lee, S. H., Shrestha, A., Park, D. H., Cho, J. M., Hur, J. H., Kim, B. S. and Lim, C. K. 2006. Effects of a soil-born Paenibacillus spp. strain KPB3 on suppression of bacterial wilt disease caused by Ralstonia solanacearum. Kor. J. Pesticide Sci. 10:313-319.
  50. van Elsas, J. D., Kastelein, P., van Bekkum, P., van der Wolf, J. M., de Vries, P. M. and van Overbeek, L. S. 2000. Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology 90:1358-1366. https://doi.org/10.1094/PHYTO.2000.90.12.1358

Cited by

  1. Resveratrol and Coumarin: Novel Agricultural Antibacterial Agent against Ralstonia solanacearum In Vitro and In Vivo vol.21, pp.11, 2016, https://doi.org/10.3390/molecules21111501
  2. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0181499
  3. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants vol.32, pp.5, 2016, https://doi.org/10.5423/PPJ.OA.03.2016.0076
  4. Integrated effect of Glomus mosseae and selected plant oils on the control of bacterial wilt disease of tomato vol.66, 2014, https://doi.org/10.1016/j.cropro.2014.07.022
  5. Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides vol.31, pp.3, 2015, https://doi.org/10.5423/PPJ.OA.03.2015.0027
  6. Biosynthesis and Biological Activity of Carbasugars vol.2016, 2016, https://doi.org/10.1155/2016/4760548
  7. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants vol.29, pp.4, 2013, https://doi.org/10.5423/PPJ.OA.04.2013.0043
  8. Altered Gene Expression and Intracellular Changes of the Viable But Nonculturable State in Ralstonia solanacearum by Copper Treatment vol.29, pp.4, 2013, https://doi.org/10.5423/PPJ.OA.07.2013.0067
  9. Diverse microbial communities in non-aerated compost teas suppress bacterial wilt vol.33, pp.3, 2017, https://doi.org/10.1007/s11274-017-2212-y
  10. Control Efficacy of Fungicides on Pepper Bacterial Wilt vol.19, pp.3, 2015, https://doi.org/10.7585/kjps.2015.19.3.323
  11. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00790