DOI QR코드

DOI QR Code

Biological activities of lignin hydrolysate-related compounds

  • Lee, Si-Seon (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology) ;
  • Monnappa, Ajay Kalanjana (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology) ;
  • Mitchell, Robert J. (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2011.10.31
  • Published : 2012.05.31

Abstract

Lignin hydrolysates contain many different chemical species, including ferulic acid, coumaric acid, vanillic acid, vanillin, syringaldehyde and furfural. From the perspective of biofuels, these compounds are problematic and can cause downstream loss of product if not removed prior to beginning the fermentative process. In contrast, a search for these compounds within the literature turns up many papers where the same compounds have beneficial properties pertaining to human health, including as antioxidants and in cancer prevention, or are involved in bacterial cell-to-cell signaling. Consequently, this article reviews the dual nature of these and other compounds found in lignin hydrolysates, highlighting both their detrimental and beneficial activities.

Keywords

References

  1. Sanchez, O. J. and Cardona, C. A. (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technol. 99, 5270-5295. https://doi.org/10.1016/j.biortech.2007.11.013
  2. Li, H., Kim, N. J., Jiang, M., Kang, J. W. and Chang, H. N. (2009) Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresource Technol. 100, 3245-3251 https://doi.org/10.1016/j.biortech.2009.01.021
  3. Qureshi, N., Ezeji, T. C., Ebener, J., Dien, B. S., Cotta, M. A. and Blaschek, H. P. (2008) Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresource Technol. 99, 5915- 5922. https://doi.org/10.1016/j.biortech.2007.09.087
  4. Qureshi, N., Saha, B. C., Hector, R. E., Hughes, S. R. and Cotta, M. A. (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I--Batch fermentation. Biomass Bioenerg. 32, 168-175. https://doi.org/10.1016/j.biombioe.2007.07.004
  5. Ezeji, T. and Blaschek, H. P. (2008) Fermentation of dried distillers' grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresource Technol. 99, 5232-5242. https://doi.org/10.1016/j.biortech.2007.09.032
  6. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M. and Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol. 96, 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  7. Klemm, D., Heublein, B., Fink, H. P. and Bohn, A. (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Edit. 44, 3358-3393. https://doi.org/10.1002/anie.200460587
  8. Alvira, P., Tomas-Pejo, E., Ballesteros, M. and Negro, M. (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technol. 101, 4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093
  9. Ezeji, T. C., Qureshi, N. and Blaschek, H. P. (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr. Opin. Biotechnol. 18, 220-227. https://doi.org/10.1016/j.copbio.2007.04.002
  10. Palmqvist, E. and Hahn-Hagerdal, B. (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol. 74, 17-24. https://doi.org/10.1016/S0960-8524(99)00160-1
  11. Ezeji, T., Qureshi, N. and Blaschek, H. P. (2007) Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97, 1460-1469. https://doi.org/10.1002/bit.21373
  12. Zaldivar, J. and Ingram, L. O. (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66, 203-210. https://doi.org/10.1002/(SICI)1097-0290(1999)66:4<203::AID-BIT1>3.0.CO;2-#
  13. Zaldivar, J., Martinez, A. and Ingram, L. O. (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65, 24-33. https://doi.org/10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2
  14. Lee, S. and Mitchell, R. J. (2011) Detection of toxic lignin hydrolysate-related compounds using an inaA: luxCDABE Fusion Strain. J. Biotechnol. (In press)
  15. Mussatto, S. I. and Roberto, I. C. (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technol. 93, 1-10. https://doi.org/10.1016/j.biortech.2003.10.005
  16. Herrmann, K. and Nagel, C. W. (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr. 28, 315-347. https://doi.org/10.1080/10408398909527504
  17. Mattila, P. and Kumpulainen, J. (2002) Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agr. Food Chem. 50, 3660-3667. https://doi.org/10.1021/jf020028p
  18. Alamed, J., Chaiyasit, W., McClements, D. J. and Decker, E. A. (2009) Relationships between free radical scavenging and antioxidant activity in foods. J. Agr. Food Chem. 57, 2969-2976. https://doi.org/10.1021/jf803436c
  19. Cai, Y. Z. (2006) Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78, 2872-2888. https://doi.org/10.1016/j.lfs.2005.11.004
  20. Butterfield, D. A., Castegna, A., Pocernich, C. B., Drake, J., Scapagnini, G. and Calabrese, V. (2002) Nutritional approaches to combat oxidative stress in Alzheimer's disease. J. Nutr. Biochem. 13, 444-461. https://doi.org/10.1016/S0955-2863(02)00205-X
  21. Soobrattee, M., Neergheen, V., Luximon-Ramma, A., Aruoma, O. and Bahorun, T. (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat. Res-Fund. Mol. M. 579, 200-213. https://doi.org/10.1016/j.mrfmmm.2005.03.023
  22. Sultana, R., Ravagna, A., Mohmmad Abdul, H., Calabrese, V. and Butterfield, D. A. (2005) Ferulic acid ethyl ester protects neurons against amyloid beta- peptide (1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J. Neurochem. 92, 749-758. https://doi.org/10.1111/j.1471-4159.2004.02899.x
  23. Vauzour, D., Corona, G. and Spencer, J. P. E. (2010) Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Arch. Biochem. Biophys. 501, 106-111. https://doi.org/10.1016/j.abb.2010.03.016
  24. Kehrer, J. P. (1993) Free radicals as mediators of tissue injury and disease. CRC Crit. Rev. Toxicol. 23, 21-48. https://doi.org/10.3109/10408449309104073
  25. Kampa, M., Alexaki, V. I., Notas, G., Nifli, A. P., Nistikaki, A., Hatzoglou, A., Bakogeorgou, E., Kouimtzoglou, E., Blekas, G. and Boskou, D. (2004) Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res. 6, R63-74. https://doi.org/10.1186/bcr752
  26. Chang, C., Chiu, J., Tseng, L., Chang, C., Chien, T., Wu, C. and Lui, W. (2006) Modulation of HER2 expression by ferulic acid on human breast cancer MCF7 cells. Eur. J. Clin. Invest. 36, 588-596. https://doi.org/10.1111/j.1365-2362.2006.01676.x
  27. Hudson, E., Dinh, P. A., Kokubun, T., Simmonds, M. S. J. and Gescher, A. (2000) Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomarkers Prev. 9, 1163.
  28. Kawabata, K., Yamamoto, T., Hara, A., Shimizu, M., Yamada, Y., Matsunaga, K., Tanaka, T. and Mori, H. (2000) Modifying effects of ferulic acid on azoxymethane- induced colon carcinogenesis in F344 rats. Cancer Lett. 157, 15-21. https://doi.org/10.1016/S0304-3835(00)00461-4
  29. Khanduja, K. L., Avti, P. K., Kumar, S., Mittal, N., Sohi, K. K. and Pathak, C. M. (2006) Anti-apoptotic activity of caffeic acid, ellagic acid and ferulic acid in normal human peripheral blood mononuclear cells: a Bcl-2 independent mechanism. BBA-Gen. Subjects 1760, 283-289. https://doi.org/10.1016/j.bbagen.2005.12.017
  30. Srinivasan, M., Rukkumani, R., Ram Sudheer, A. and Menon, V. P. (2005) Ferulic acid, a natural protector against carbon tetrachloride induced toxicity. Fundam. Clin. Pharmacol. 19, 491-496. https://doi.org/10.1111/j.1472-8206.2005.00332.x
  31. Sudheer, A. R., Chandran, K., Marimuthu, S. and Menon, V. P. (2005) Ferulic acid modulates altered lipid profiles and prooxidant/antioxidant status in circulation during nicotine-induced toxicity: a dose-dependent study. Toxicol. Mech. Method 15, 375-381. https://doi.org/10.1080/15376520500194783
  32. Aragno, M., Parola, S., Tamagno, E., Brignardello, E., Manti, R., Danni, O. and Boccuzzi, G. (2000) Oxidative derangement in rat synaptosomes induced by hyperglycaemia: restorative effect of dehydroepiandrosterone treatment. Biochem. Pharmacol. 60, 389-395. https://doi.org/10.1016/S0006-2952(00)00327-0
  33. Hamden, K., Allouche, N., Damak, M. and Elfeki, A. (2009) Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem. Biol. Interact. 180, 421-432. https://doi.org/10.1016/j.cbi.2009.04.002
  34. Ohnishi, M., Matuo, T., Tsuno, T., Hosoda, A., Nomura, E., Taniguchi, H., Sasaki, H. and Morishita, H. (2004) Antioxidant activity and hypoglycemic effect of ferulic acid in STZ induced diabetic mice and KK Ay mice. Biofactors 21, 315-319. https://doi.org/10.1002/biof.552210161
  35. Nomura, E., Kashiwada, A., Hosoda, A., Nakamura, K., Morishita, H., Tsuno, T. and Taniguchi, H. (2003) Synthesis of amide compounds of ferulic acid, and their stimulatory effects on insulin secretion in vitro. Bioorg. Med. Chem. 11, 3807-3813. https://doi.org/10.1016/S0968-0896(03)00280-3
  36. Sander, C. S., Chang, H., Hamm, F., Elsner, P. and Thiele, J. J. (2004) Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int. J. Dermatol. 43, 326-335. https://doi.org/10.1111/j.1365-4632.2004.02222.x
  37. Lin, F. H., Lin, J. Y., Gupta, R. D., Tournas, J. A., Burch, J. A., Selim, M. A., Monteiro-Riviere, N. A., Grichnik, J. M., Zielinski, J. and Pinnell, S. R. (2005) Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J. Invest. Dermatol. 125, 826-832. https://doi.org/10.1111/j.0022-202X.2005.23768.x
  38. Seo, Y., Kim, S., Boo, Y., Baek, J., Lee, S. and Koh, J. (2011) Effects of p coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin. Exp. Dermatol. 36, 260-266. https://doi.org/10.1111/j.1365-2230.2010.03983.x
  39. Saija, A., Tomaino, A., Trombetta, D., De Pasquale, A., Uccella, N., Barbuzzi, T., Paolino, D. and Bonina, F. (2000) In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int. J. Pharm. 199, 39-47. https://doi.org/10.1016/S0378-5173(00)00358-6
  40. Touyz, R. M. and Briones, A. M. (2010) Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens. Res. 34, 5-14.
  41. Ohsaki, Y., Shirakawa, H., Koseki, T. and Komai, M. (2008) Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. J. Agr. Food Chem. 56, 2825-2830. https://doi.org/10.1021/jf072896y
  42. Suzuki, A., Kagawa, D., Fujii, A., Ochiai, R., Tokimitsu, I. and Saito, I. (2002) Short-and long-term effects of ferulic acid on blood pressure in spontaneously hypertensive rats. Am. J. Hypertens. 15, 351-357. https://doi.org/10.1016/S0895-7061(01)02337-8
  43. Bonomini, F., Tengattini, S., Fabiano, A., Bianchi, R. and Rezzani, R. (2008) Atherosclerosis and oxidative stress. Histol. Histopathol. 23, 381.
  44. Wang, B., Ouyang, J., Liu, Y., Yang, J., Wei, L., Li, K. and Yang, H. (2004) Sodium ferulate inhibits atherosclerogenesis in hyperlipidemia rabbits. J. Cardiovasc. Pharmacol. 43, 549. https://doi.org/10.1097/00005344-200404000-00010
  45. Yeh, Y., Lee, Y. T., Hsieh, H. S. and Hwang, D. F. (2009) Dietary caffeic acid, ferulic acid and coumaric acid supplements on cholesterol metabolism and antioxidant activity in rats. J. Food Drug Anal. 17, 123-132.
  46. Schaefer, A. L., Greenberg, E., Oliver, C. M., Oda, Y., Huang, J. J., Bittan-Banin, G., Peres, C. M., Schmidt, S., Juhaszova, K. and Sufrin, J. R. (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454, 595-599. https://doi.org/10.1038/nature07088
  47. Mitchell, R. J., Lee, S. K., Kim, T. and Ghim, C. M. (2011) Microbial Linguistics: perspectives and applications of microbial cell-to-cell communication. BMB Rep. 44, 1-10. https://doi.org/10.5483/BMBRep.2011.44.1.1
  48. Whetten, R. and Sederoff, R. (1995) Lignin biosynthesis. Plant Cell 7, 1001.
  49. Zhang, Z., Liao, L., Moore, J., Wu, T. and Wang, Z. (2009) Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 113, 160-165. https://doi.org/10.1016/j.foodchem.2008.07.061
  50. Prince, P. S. M., Dhanasekar, K. and Rajakumar, S. (2011) Preventive effects of vanillic acid on lipids, bax, bcl-2 and myocardial infarct size on isoproterenol- induced myocardial infarcted rats: a biochemical and in vitro study. Cardiovasc. Toxicol. 11, 58-66. https://doi.org/10.1007/s12012-010-9098-3
  51. Itoh, A., Isoda, K., Kondoh, M., Kawase, M., Kobayashi, M., Tamesada, M. and Yagi, K. (2009) Hepatoprotective effect of syringic acid and vanillic acid on concanavalin a-induced liver injury. Biol. Pharm. Bull. 32, 1215-1219. https://doi.org/10.1248/bpb.32.1215
  52. Itoh, A., Isoda, K., Kondoh, M., Kawase, M., Watari, A., Kobayashi, M., Tamesada, M. and Yagi, K. (2010) Hepatoprotective Effect of Syringic Acid and Vanillic Acid on CCl 4-Induced Liver Injury. Biol. Pharm. Bull. 33, 983-987. https://doi.org/10.1248/bpb.33.983
  53. Kim, S. J., Kim, M. C., Um, J. Y. and Hong, S. H. (2010) The beneficial effect of vanillic acid on ulcerative colitis. Molecules 15, 7208-7217. https://doi.org/10.3390/molecules15107208
  54. Dhananjaya, B. L., Nataraju, A., Raghavendra Gowda, C. D., Sharath, B. K. and D'Souza, C. J. M. (2009) Vanillic acid as a novel specific inhibitor of snake venom 5'-nucleotidase: a pharmacological tool in evaluating the role of the enzyme in snake envenomation. Biochemistry (Mosc) 74, 1315-1319. https://doi.org/10.1134/S0006297909120037
  55. Van Dyk, T. K., Templeton, L. J., Cantera, K. A., Sharpe, P. L. and Sariaslani, F. S. (2004) Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve? J. Bacteriol. 186, 7196-7204. https://doi.org/10.1128/JB.186.21.7196-7204.2004
  56. Chong, K. P., Rossall, S. and Atong, M. (2009) In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma Boninense. J. Agr. Sci. 1, 15-20.
  57. Kamaya, Y., Tsuboi, S., Takada, T. and Suzuki, K. (2006) Growth stimulation and inhibition effects of 4-hydroxybenzoic acid and some related compounds on the freshwater green alga Pseudokirchneriella subcapitata. Arch. Environ. Contam. Toxicol. 51, 537-541. https://doi.org/10.1007/s00244-005-0320-4
  58. Lodovici, M., Guglielmi, F., Meoni, M. and Dolara, P. (2001) Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem. Toxicol. 39, 1205-1210. https://doi.org/10.1016/S0278-6915(01)00067-9
  59. Baczek-Kwinta, R., Filek, W., Grzesiak, S. and Hura, T. (2006) The effect of soil drought and rehydration on growth and antioxidative activity in flag leaves of triticale. Biol. Plantarum. 50, 55-60. https://doi.org/10.1007/s10535-005-0074-x
  60. Jain, M., Nandwal, A., Kundu, B., Kumar, B., Sheoran, I., Kumar, N., Mann, A. and Kukreja, S. (2006) Water relations, activities of antioxidants, ethylene evolution and membrane integrity of pigeonpea roots as affected by soil moisture. Biol. Plantarum. 50, 303-306. https://doi.org/10.1007/s10535-006-0026-0
  61. Horvath, E., Pal, M., Szalai, G., Paldi, E. and Janda, T. (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol. Plantarum. 51, 480-487. https://doi.org/10.1007/s10535-007-0101-1
  62. Lemini, C., Jaimez, R., Avila, M. E., Franco, Y., Larrea, F. and Lemus, A. E. (2003) In vivo and in vitro estrogen bioactivities of alkyl parabens. Toxicol. Ind. Health 19, 69. https://doi.org/10.1191/0748233703th177oa
  63. Lemini, C., Silva, G., Timossi, C., Luque, D., Valverde, A., González-Martinez, M., Hernández, A., Rubio-Poo, C., Chavez Lara, B. and Valenzuela, F. (1997) Estrogenic effects of p-hydroxybenzoic acid in CD1 mice. Environ. Res. 75, 130-134. https://doi.org/10.1006/enrs.1997.3782
  64. Pugazhendhi, D., Pope, G. and Darbre, P. (2005) Oestrogenic activity of p hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. J. Appl. Toxicol. 25, 301-309. https://doi.org/10.1002/jat.1066
  65. Kumar, S., Priyadarsini, K. and Sainis, K. (2002) Free radical scavenging activity of vanillin and o-vanillin using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical. Redox Rep. 7, 35-40. https://doi.org/10.1179/135100002125000163
  66. Lirdprapamongkol, K., Kramb, J. P., Suthiphongchai, T., Surarit, R., Srisomsap, C., Dannhardt, G. and Svasti, J. (2009) Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J. Agr. Food Chem. 57, 3055-3063. https://doi.org/10.1021/jf803366f
  67. Kamat, J. P., Ghosh, A. and Devasagayam, T. P. A. (2000) Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol. Cell. Biochem. 209, 47-53. https://doi.org/10.1023/A:1007048313556
  68. Shaughnessy, D. T., Schaaper, R. M., Umbach, D. M. and DeMarini, D. M. (2006) Inhibition of spontaneous mutagenesis by vanillin and cinnamaldehyde in Escherichia coli: Dependence on recombinational repair. Mutat. Res-Fund. Mol. M. 602, 54-64. https://doi.org/10.1016/j.mrfmmm.2006.08.006
  69. Shaughnessy, D. T., Setzer, R. W. and DeMarini, D. M. (2001) The antimutagenic effect of vanillin and cinnamaldehyde on spontaneous mutation in Salmonella TA104 is due to a reduction in mutations at GC but not AT sites. Mutat. Res-Fund. Mol. M. 480, 55-69. https://doi.org/10.1016/S0027-5107(01)00169-5
  70. Gustafson, D. L., Franz, H. R., Ueno, A. M., Smith, C. J., Doolittle, D. J. and Waldren, C. A. (2000) Vanillin (3-methoxy-4-hydroxybenzaldehyde) inhibits mutation induced by hydrogen peroxide, N-methyl-N-nitrosoguanidine and mitomycin C but not (137)Cs gamma- radiation at the CD59 locus in human-hamster hybrid AL cells. Mutagenesis 15, 207. https://doi.org/10.1093/mutage/15.3.207
  71. King, A. A., Shaughnessy, D. T., Mure, K., Leszczynska, J., Ward, W. O., Umbach, D. M., Xu, Z., Ducharme, D., Taylor, J. A. and DeMarini, D. M. (2007) Antimutagenicity of cinnamaldehyde and vanillin in human cells: Global gene expression and possible role of DNA damage and repair. Mutat. Res-Fund. Mol. M. 616, 60-69. https://doi.org/10.1016/j.mrfmmm.2006.11.022
  72. Lim, E. J., Kang, H. J., Jung, H. J., Song, Y. S., Lim, C. J. and Park, E. H. (2008) Anti-angiogenic, anti-inflammatory and anti-nociceptive activities of vanillin in ICR mice. Biomol. Ther. 16, 132-136. https://doi.org/10.4062/biomolther.2008.16.2.132
  73. Wu, S. L., Chen, J. C., Li, C. C., Lo, H. Y., Ho, T. Y. and Hsiang, C. Y. (2009) Vanillin improves and prevents trinitrobenzene sulfonic acid-induced colitis in mice. J. Pharmacol. Exp. Ther. 330, 370. https://doi.org/10.1124/jpet.109.152835
  74. Liang, J. A., Wu, S. L., Lo, H. Y., Hsiang, C. Y. and Ho, T. Y. (2009) Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor- kappa B signaling pathway in human hepatocellular carcinoma cells. Mol. Pharmacol. 75, 151-157. https://doi.org/10.1124/mol.108.049502
  75. Cheng, W. Y., Hsiang, C. Y., Bau, D. T., Chen, J. C., Shen, W. S., Li, C. C., Lo, H. Y., Wu, S. L., Chiang, S. Y. and Ho, T. Y. (2007) Microarray analysis of vanillin-regulated gene expression profile in human hepatocarcinoma cells. Pharmacol. Res. 56, 474-482. https://doi.org/10.1016/j.phrs.2007.09.009
  76. Lirdprapamongkol, K., Sakurai, H., Kawasaki, N., Choo, M. K., Saitoh, Y., Aozuka, Y., Singhirunnusorn, P., Ruchirawat, S., Svasti, J. and Saiki, I. (2005) Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur. J. Pharm. Sci. 25, 57-65. https://doi.org/10.1016/j.ejps.2005.01.015
  77. Wong, Z. J., Chen, K. F. and Li, J. (2010) Formation of vanillin and syringaldehyde in an oxygen delignification process. Bioresources 5, 1509-1516.
  78. Pereira, R. S., Mussatto, S. I. and Roberto, I. C. (2011) Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J. Ind. Microbiol. Biotechnol. 38, 71-78. https://doi.org/10.1007/s10295-010-0830-6
  79. Lee, H., Cho, D. H., Kim, Y. H., Shin, S. J., Kim, S. B., Han, S. O., Lee, J., Kim, S. W. and Park, C. (2011) Tolerance of saccharomyces cerevisiae K35 to lignocellulose- derived inhibitory compounds. Biotechnol. Bioproc. E. 16, 755-760. https://doi.org/10.1007/s12257-010-0474-4
  80. Cortez, D. V. and Roberto, I. C. (2010) Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by candida guilliermondii. Bioresource Technol. 101, 1858-1865. https://doi.org/10.1016/j.biortech.2009.09.072
  81. Chang, K. C., Duh, C. Y., Chen, I. S. and Tsai, I. L. (2003) A cytotoxic butenolide, two new dolabellane diterpenoids, a chroman and a benzoquinol derivative Formosan Casearia membranacea. Planta Med. 69, 667-672. https://doi.org/10.1055/s-2003-41120
  82. Tsai, I. L., Chen, J. H., Duh, C. Y. and Chen, I. S. (2001) Cytotoxic neolignans and butanolides from machilus obovatifolia. Planta Med. 67, 559-561. https://doi.org/10.1055/s-2001-16480
  83. Deng, J. Z., Newman, D. J. and Hecht, S. M. (2000) Use of COMPARE analysis to discover functional analogues of bleomycin. J. Nat. Prod. 63, 1269-1272. https://doi.org/10.1021/np000084p
  84. Stanikunaite, R., Khan, S. I., Trappe, J. M. and Ross, S. A. (2009) Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle elaphomyces granulatus. Phytother. Res. 23, 575-578. https://doi.org/10.1002/ptr.2698
  85. Farah, M. H. and Samuelsson, G. (1992) Pharmacologically active phenylpropanoids from senra- incana. Planta Med. 58, 14-18. https://doi.org/10.1055/s-2006-961380
  86. Lee, C. Y., Sharma, A., Cheong, J. E. and Nelson, J. L. (2009) Synthesis and antioxidant properties of dendritic polyphenols. Bioorg. Med. Chem. Lett. 19, 6326-6330. https://doi.org/10.1016/j.bmcl.2009.09.088
  87. Lloret, L., Eibes, G., Lu-Chau, T. A., Moreira, M. T., Feijoo, G. and Lema, J. M. (2010) Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochem. Eng. J. 51, 124-131. https://doi.org/10.1016/j.bej.2010.06.005
  88. Setzer, W. N. (2011) Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. J. Mol. Model. 17, 1841-1845. https://doi.org/10.1007/s00894-010-0893-3
  89. Lee, C. Y., Sharma, A., Uzarski, R. L., Cheong, J. E., Xu, H., Held, R. A., Upadhaya, S. K. and Nelson, J. L. (2011) Potent antioxidant dendrimers lacking pro-oxidant activity. Free Radic. Biol. Med. 50, 918-925. https://doi.org/10.1016/j.freeradbiomed.2010.10.699
  90. Hahn-Hagerdal, B. and Palmqvist, E. (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol. 74, 25-33. https://doi.org/10.1016/S0960-8524(99)00161-3
  91. Banerjee, N., Bhatnagar, R. and Viswanathan, L. (1981) Inhibition of glycolysis by furfural in saccharomycescerevisiae. Eur. J. Appl. Microbiol. 11, 226-228. https://doi.org/10.1007/BF00505872
  92. Navarro, A. R. (1994) Effects of furfural on ethanol fermentation by saccharomyces-cerevisiae-mathematicalmodels. Curr. Microbiol. 29, 87-90. https://doi.org/10.1007/BF01575753
  93. Liden, G., Taherzadeh, M. J., Gustafsson, L. and Niklasson, C. (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biot. 53, 701-708. https://doi.org/10.1007/s002530000328
  94. Sanchez, B. and Bautista, J. (1988) Effects of furfural and 5-hydroxymethylfurfural on the fermentation of saccharomyces- cerevisiae and biomass production from candida- guilliermondii. Enzyme Microb. Technol. 10, 315-318. https://doi.org/10.1016/0141-0229(88)90135-4
  95. Delgenes, J. P., Moletta, R. and Navarro, J. M. (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, zymomonas mobilis, pichia stipitis, and candida shehatae. Enzyme Microb. Technol. 19, 220-225. https://doi.org/10.1016/0141-0229(95)00237-5
  96. Pfeifer, P. A., Bonn, G. and Bobleter, O. (1984) Influence of biomass degradation products on the fermentation of glucose to ethanol by saccharomyces carlsbergensis W-34. Biotechnol. Lett. 6, 541-546. https://doi.org/10.1007/BF00139999
  97. Watson, N. E., Prior, B. A., Lategan, P. M. and Lussi, M. (1984) Factors in acid-treated bagasse inhibiting ethanol- production from d-xylose by pachyslen-tannophilus. Enzyme Microb. Technol. 6, 451-456. https://doi.org/10.1016/0141-0229(84)90095-4
  98. Ingram, L. O., Zaldivar, J. and Martinez, A. (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65, 24-33. https://doi.org/10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2
  99. Zacchi, G. and Szengyel, Z. (2000) Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUT C30. Appl. Biochem. Biotechnol. 89, 31-42. https://doi.org/10.1385/ABAB:89:1:31
  100. Schwarz, W. H., Zverlov, V. V., Berezina, O. and Velikodvorskaya, G. A. (2006) Bacterial acetone and butanol production by industrial fermentation in the soviet union: use of hydrolyzed agricultural waste for biorefinery. Appl. Microbiol. Biot. 71, 587-597. https://doi.org/10.1007/s00253-006-0445-z
  101. Kelly, C., Jones, O., Barnhart, C. and Lajoie, C. (2008) Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis. Appl. Biochem. Biotechnol. 148, 97-108. https://doi.org/10.1007/s12010-007-8103-1
  102. Hahn-Hagerdal, B., Palmqvist, E. and Almeida, J. S. (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol. Bioeng. 62, 447-454. https://doi.org/10.1002/(SICI)1097-0290(19990220)62:4<447::AID-BIT7>3.0.CO;2-0
  103. Boyer, L. J., Vega, J. L., Klasson, K. T., Clausen, E. C. and Gaddy, J. L. (1992) The effects of furfural on ethanol production by saccharomyces cereyisiae in batch culture. Biomass Bioenerg. 3, 41-48. https://doi.org/10.1016/0961-9534(92)90018-L
  104. Boopathy, R., Bokang, H. and Daniels, L. (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J. Ind. Microbiol. 11, 147-150. https://doi.org/10.1007/BF01583715
  105. Zhang, M., Franden, M. A. and Pienkos, P. T. (2009) Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J. Biotechnol. 144, 259-267. https://doi.org/10.1016/j.jbiotec.2009.08.006
  106. Blaschek, H. P., Ezeji, T. and Qureshi, N. (2007) Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97, 1460-1469. https://doi.org/10.1002/bit.21373
  107. Wu, H., Huang, C., Liu, Q. P., Li, Y. Y. and Zong, M. H. (2011) Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast trichosporon fermentans. J. Agr. Food Chem. 59, 4606-4613. https://doi.org/10.1021/jf104320b
  108. Castellino, N., Elmino, O. and Rozera, G. (1963) Experimental research on toxicity of furfural. Arch. Environ. Health 7, 574-582. https://doi.org/10.1080/00039896.1963.10663586
  109. Hessov, I. (1975) Toxicity of 5-hydroxymethylfurfural and furfural to daphnia magna. Acta Pharmacol. Toxicol. (Copenh). 37, 94-96.
  110. Nomeir, A. A., Silveira, D. M., Mccomish, M. F. and Chadwick, M. (1992) Comparative metabolism and disposition of furfural and furfuryl alcohol in rats. Drug Metab. Dispos. 20, 198-204.
  111. Janzowski, C., Glaab, V., Samimi, E., Schlatter, J. and Eisenbrand, G. (2000) 5-hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem. Toxicol. 38, 801-809. https://doi.org/10.1016/S0278-6915(00)00070-3
  112. Pearson, D. A., Tan, C. H., German, J. B., Davis, P. A. and Gershwin, M. E. (1999) Apple juice inhibits human low density lipoprotein oxidation. Life Sci. 64, 1913-1920. https://doi.org/10.1016/S0024-3205(99)00137-X
  113. Abdulmalik, O., Safo, M. K., Chen, Q., Yang, J., Brugnara, C., Ohene-Frempong, K., Abraham, D. J. and Asakura, T. (2005) 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br. J. Haematol. 128, 552-561. https://doi.org/10.1111/j.1365-2141.2004.05332.x
  114. Feng, X., Lu, J., Xin, H., Zhang, L., Wang, Y. and Tang, K. (2011) Anti-arthritic active fraction of capparis spinosa L. fruits and its chemical constituents. Yakugaku Zasshi 131, 423-429. https://doi.org/10.1248/yakushi.131.423

Cited by

  1. Evaluation of the Safety of Three Phenolic Compounds from <i>Dipteryx alata</i> Vogel with Antiophidian Potential vol.06, pp.01, 2015, https://doi.org/10.4236/cm.2015.61001
  2. Catalytic Conversion of Sodium Lignosulfonate to Vanillin: Engineering Aspects. Part 1. Effects of Processing Conditions on Vanillin Yield and Selectivity vol.52, pp.25, 2013, https://doi.org/10.1021/ie4007744
  3. The Role of Soluble, Insoluble Fibers and Their Bioactive Compounds in Cancer: A Mini Review vol.06, pp.01, 2015, https://doi.org/10.4236/fns.2015.61001
  4. Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings vol.242, pp.3, 2015, https://doi.org/10.1007/s00425-015-2348-7
  5. Identification of Escherichia coli biomarkers responsive to various lignin-hydrolysate compounds vol.114, 2012, https://doi.org/10.1016/j.biortech.2012.02.085
  6. Fungal demethylation of Kraft lignin vol.73-74, 2015, https://doi.org/10.1016/j.enzmictec.2015.04.001
  7. Perspectives on the use of transcriptomics to advance biofuels vol.2, pp.4, 2015, https://doi.org/10.3934/bioeng.2015.4.487
  8. Characterization of aPhanerochaete chrysosporiumGlutathione Transferase Reveals a Novel Structural and Functional Class with Ligandin Properties vol.287, pp.46, 2012, https://doi.org/10.1074/jbc.M112.402776
  9. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review vol.32, pp.5, 2014, https://doi.org/10.1016/j.biotechadv.2014.04.007
  10. Production of free and glycosylated isoflavones in in vitro soybean (Glycine max L.) hypocotyl cell suspensions and comparison with industrial seed extracts vol.119, pp.2, 2014, https://doi.org/10.1007/s11240-014-0534-0
  11. Biochemical composition of maple sap and relationships among constituents vol.41, 2015, https://doi.org/10.1016/j.jfca.2014.12.030
  12. Environmentally friendly pretreatment of plant biomass by planetary and attrition milling vol.144, 2013, https://doi.org/10.1016/j.biortech.2013.06.090
  13. An analysis of dietary fiber and fecal fiber components including pH in rural Africans with colorectal cancer vol.16, pp.1, 2018, https://doi.org/10.5217/ir.2018.16.1.99