
RELIABILITY ESTIMATION FOR A DIGITAL INSTRUMENT
AND CONTROL SYSTEM

YANG YAGUANG1* and SYDNOR RUSSELL2

1Office of Research, Nuclear Regulatory Commission, Rockville, 20850, USA
2Office of Research, Nuclear Regulatory Commission, Rockville, 20850, USA
*Corresponding author. E-mail : yaguang.yang@nrc.gov

Invited September14, 2011
Received October 22, 2011
Accepted for Publication March 10, 2012

1. INTRODUCTION

Digital instrumentation and control (DI&C) systems
are widely adopted in various industries, as their flexibility
and ability to implement various functions can be used to
monitor, analyze, and control complex systems automatically.
It is anticipated that DI&C systems will replace the
traditional analog instrumentation and control (AI&C)
systems in future nuclear reactor designs. There is increasing
interest in reliability and risk analyses for safety-critical
DI&C systems in regulatory organizations, such as The
United States Nuclear Regulatory Commission.

Developing reliability models and reliability estimation
methods for digital control and protection systems will
involve every part of the DI&C system, such as the
sensors, signal conditioning and processing components,
transmission lines and digital communication systems,
(digital to analog) D/A and (analog to digital) A/D
converters, computer system, signal processing software,
control and protection software, power supply system,
and actuators. Some of these components are analog
hardware, such as the sensors and actuators. Their failure
mechanisms are well understood, and the traditional
reliability model and estimation methods can be directly
applied. However, many of these components include (a)
digital hardware, such as boards, cards, or FPGAs (field-
programmable gate arrays) which contain digital gates
and/or memory composed of millions of transistors,
capacitors, resistors, and associated communication
links; (b) firmware which has software embedded into the

digital hardware so that it can provide complex functions
as desired; (c) system software such as Unix, Linux or
Windows which coordinates the work of a system composed
of digital hardware and firmware (boards and cards), and
provides an interface for application users; and (d)
application software which monitors (via sensors) and
controls (via actuators) safety-related and non-safety-
related nuclear power plant systems. To estimate the
realibility of such a large system is challenging. In particular,
the software needs special consideration because its failure
mechanism is unique; the reliability estimation method
for a software system should be different from that used
for hardware.

Owing to regulatory needs in the nuclear industry and
the technical challenges, many attempts have been made
to find practical ways to improve the software reliability
and to estimate the reliability. Dennis Lawrence [1]
discussed activities that should be carried out throughout
the software life cycle. Parnas, Asmis, and Madey [2]
emphasized documentation requirements and quality control,
including testing and reviews. Leveson and Harvey [3]
proposed software fault tree analysis method. However,
the most extensively investigated software reliability
method is the software reliability growth model [4]. Many
statistics models, such as the exponential distribution,
Poisson distribution, Weibell distribution, and Gamma
distribution models have been considered, and many
different scenarios have been discussed [5-8].
Nonetheless, there is no formed consensus on an ideal
software reliability estimation method.

In this paper, we propose a reliability estimation method for DI&C systems. At the system level, a fault tree model is
suggested and Boolean algebra is used to obtain the minimal cut sets. At the component level, an exponential distribution is
used to model hardware failures, and Bayesian estimation is suggested to estimate the failure rate. Additionally, a binomial
distribution is used to model software failures, and a recently developed software reliability estimation method is suggested to
estimate the software failure rate. The overall system reliability is then estimated based on minimal cut sets, hardware failure
rates and software failure rates.
KEYWORDS : Reliability, DI&C, Software Reliability, Fault Tree

405NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.44 NO.4 MAY 2012

http://dx.doi.org/10.5516/NET.04.2012.513

At the system level, several probabilistic reliability
analysis models of DI&C systems are discussed in IEC
standard 61508 [9]. One of the widely used models in the
nuclear industry is the fault tree/event tree model, which
was first conceived by Watson [10] in 1961. This method
was discussed in detail in [11]. It has had many applications,
including some recent attempts to demonstrate a PRA
(probabilistic risk analysis) for a digital instrumentation
and control system [12] and for an ESBWR (economic
simplified boiling water reactor) PRA analysis described
in the ESBWR certification PRA document [13]. Because
there is no consensus on a method of software reliability
estimation despite the great efforts expended over the past
few decades, software reliability is not addressed in [12]
and software reliability is assumed to be some constant in
[13], both of which are less than ideal.

In this paper, we propose a reliability estimation
method for DI&C systems using a recently developed
software reliability estimation method and a traditional
hardware reliability estimation method. For the purpose
of completeness, we will briefly describe the traditional
hardware reliability estimation method so that we can show
how this method is incorporated into the probabilistic
reliability analysis of DI&C systems. Our main focus,
however, is our own idea on how to model software failures
and how to estimate software reliability based on the
software failure model and test results, as well as how to
evaluate overall the reliability of the DI&C systems.

The remainder of the paper is organized as follows.
Section 2 presents the fault tree reliability model for DI&C
systems and explains the modeling procedures using a
simple artificial example. Section 3 briefly discusses a
hardware reliability model and failure rate estimation
method. Section 4 introduces a software reliability model
and discusses in detail the software failure rate estimation
method. Section 5 provides a reliability model and failure
rate estimation method for firmware, which has software
embedded into hardware. Section 6 presents the estimation
method to determine the overall DI&C system failure rate.
The last section gives the conclusions of this paper.

2. SYSTEM RELIABILITY MODEL

In this section, we discuss how the fault tree method
is applied to create a full reliability model of a digital
instrumentation and control system, which includes both
software and hardware.

The first consideration in building such a system
reliability model is the level of detail that is needed in this
reliability model. In theory, the more details the model
has, the higher the level of fidelity the model will exhibit.
However, this may not be realistic. For example, digital
circuit boards can have millions of transistors. If we
include all of these transistors, the model will be too
complicated. Given that acceptance tests and pass/fail
decisions are most likely conducted at the board level,
we suggest that the level of detail should not be deeper
than the board level. All of the hardware and software
should be included, but the hardware and software should
be considered separately because the failure mechanism
is different and the reliability models are different, as we
will discuss later.

Second, the model should be system specific, i.e., it
should depend on a specific DI&C system design. For
illustration purposes, we use a simple artificial example to
describe the modeling procedure. Fig. 1 is a simplified
DI&C system which has three identical redundant smart
sensors which have both hardware and software. The
measurements from the three sensors are sent to an A/D
converter, the signal is processed in a single-board computer,
and the control command is then sent to a D/A converter
and then to an actuator. All components have two different
failures, i.e., aging-related failures and physical-damage-
related failures, except for the single-board computer and
the smart sensors, which have two failure modes, i.e.,
hardware failure and software failure. We also assume that
the A/D always receives signals (correct or incorrect)
from the three sensors while the signals are useful only if
two of the sensors provide correct measurement.

Following the convention used in earlier work [11],
we use the concept of unreliability in the remaining

406 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.44 NO.4 MAY 2012

YANG et al., Reliability Estimation for a Digital Instrument and Control System

Fig. 1. A Simple DI&C System

407NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.44 NO.4 MAY 2012

YANG et al., Reliability Estimation for a Digital Instrument and Control System

discussion. The fault tree can then be created. It is shown
in Fig. 2.

Here, A, C, E, G, K, and M are aging-related failures;
H, L, and N are physical-damage-related failures, I denotes
computer hardware failures, and B, D, and F are software
failures due to common-cause failure events X in smart
sensors. J denotes software failures in the computer. Let
“+” denote the logic “or” and “•” denote the logic “and.”
Using the symbols defined in Fig. 2, the fault tree model
can be converted to Boolean equations, as follows:

S = M + N + DA
DA = K + L + P
P = I + J + AD

AD = H + G + S1•S2 + S2•S3 + S1•S3 + S1•S2•S3
S1 = A + B = A + X
S2 = C + D = C + X
S3 = E + F = E + X

Boolean algebra can be used to reduce the Boolean
equations into equivalent minimal cut sets which define
the “failure modes” of the DI&C failure events. This gives

Fig. 2. Fault Tree of the DI&C System

S = M + N + DA = N + M + L + K + P
= N + M + L + K + J + I + G + H + S1•S2 + S2•S3 +

S1•S3 + S1•S2•S3
= N + M + L + K + J + I + G + H + (A + X)•(C + X) +

(C + X)•(E + X)
+ (A + X)•(E + X) + (A + X)•(C + X)•(E + X)
= N + M + L + K + J + I + G + H + A•C + C•E + A•E + X

where the last expression represents the minimal cut sets.
From the minimal cut sets, it becomes clear that the system
failure can be caused by single failures, G, H, I, J, K, L, M,
N, and X; and by double failures, (A • C), (A • E), (C • E).
The evaluation of the minimal cut set (failure mode)
probabilities and the system failure probability can be
straightforward if the component failure probabilities are
obtained. It should be noted that this modeling method
does include a specific common-cause failure, i.e., when
B, D, and F, the software in smart sensors, fail at the same
time due to common-cause failure X.

More details on fault tree models can be found in the
literature [11] and one can always follow the standard given
in earlier work [9]. Very detailed examples [11] can also
be accessed while creating a unique fault tree model. In
the remainder of the paper, we assume that a fault tree for
a specific DI&C system has been created, that minimal cut
sets were obtained using Boolean algebra, and that single
failure paths and multiple failure paths were given by the
minimal cut sets. We will focus on the details of how to
obtain the hardware failure rates, software failure rates,
firmware failure rates, and how to use the failure rates and
minimal cut sets to estimate the overall DI&C system
reliability.

3. HARDWARE COMPONENT FAILURE MODEL

3.1 Hardware Probabilistic Failure Model
In the aforementioned study [11], the model for the

constant failure rate per hour, which has an exponential
distribution, is suggested as a component failure model. The
advantage of this model is its simplicity and the fact that
it characterizes the main feature of hardware failures; i.e.,
the failure probability increases over time. For this model,
the probability F(t) that the component experiences its first
failure within time period t, given it is initially operation, is

The reliability R(t) is given by the following equation:

The density of the exponential distribution f (t) is
given by

More complicated models, such as the Weibull and
Gamma failure distribution models can be used in a similar
way [14], but they are not discussed in this paper because,

for the fault tree model, the exponential distribution is
adequate [11, XI-10].

3.2 Hardware Failure Rate Estimation
For an exponential distribution, the failure rate λ for

different components can be found in various documents,
such as [15-16]. However, most failure rate data collections
are either too old or too small for real applications, and
many do not provide details on how the data were collected
and calculated [12]. Another means of obtaining the failure
rate information is from hardware vendors, as they
normally conduct reliability tests of their products and
may have reasonably accurate failure rate estimations for
their specific pieces of equipment. We recommend here a
Bayesian estimation method which can be used to estimate
the hardware failure rate either by vendors, system
integrators, or by regulatory staff members. Let g(λ) be a
priori distribution of the failure rate λ. Let n be the number
of the total tested hardware components and ti be the time
when the i th hardware component fails in the test. Therefore,
the average time for the hardware to fail in the test is

Using Bayesian principles, the posterior density of λ is
sourced from earlier work, as follows [17]:

For the sake of algebraic convenience, a conjugate priori
of gamma distribution is suggested for λ, which results in

where α can be interpreted as the number of priori
observations and β as the sum of the prior observations.
The posterior density has the form of a gamma distribution,
as follows (see [18]):

The estimated failure rate
–
λ is the mean of (7), i.e.,

If α = 0.5, β = 0, and n = 1, (8) is the same as the
formula given in earlier work [19]. However, we believe
that (8) is a better formula for general cases because it
results from the assumption that the failure rate satisfies
an exponential distribution.

4. SOFTWARE COMPONENT FAILURE MODEL

Software failures are fundamentally different from

408 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.44 NO.4 MAY 2012

YANG et al., Reliability Estimation for a Digital Instrument and Control System

(1)

(2)

(3)

(7)

(4)

(8)

(6)

(5)

hardware failures. Typical hardware failures are due to
wear out or aging-related failures. Therefore, hardware
failure models are based on a random failure time that
can be described by exponential, Poisson, Weibull, or
Gamma distributions, for example. However, typical
software failures are due to undetected human errors in
certain parts of the software and failures are triggered by
combinations of specific events and input data sets. A
failure occurs when triggering events direct software to
execute a problematic part of the software and a triggering
data set is in use. Therefore, software failure models based
on a random failure time may be inappropriate. Instead,
we should consider software-specific failure characteristics
while developing a useful software reliability model and
introducing a software reliability estimation method. In
particular, we model the software failure probability using
a binomial distribution. If a piece of software contains
some error(s), then there is a probability that the software
with error(s) will fail if some triggering event occurs and
if a triggering data set is in use. Moreover, a test will catch
the failure when this occurs. The software failure rate is
then introduced according to the ratio of the execution
time of distributions faulty software that causes failure(s)
and the total execution time.

Though there is no consensus on a method to be used
for software reliability assessments, we believe that a
recently developed test-based method is well suited for
software reliability estimations [20].

4.1 Flow Network Model of Software
It was suggested in the referenced work [20] that the

structure of the software should be taken into consideration
in software reliability assessments because (a) it reflects
the individual software complexity, and (b) tests are not
equally executed in every line of code. This lower level
of detail should give better reliability estimations than
the black box model [21] because more information is
used in the estimation. To simplify our presentation and
save space, we focus on single-thread software. For a
multi-thread case, we refer the readers to the literature [22].

We use a flow network to model the software structure.
Let source denote the start point of the software; sink
denote the end of the software; n nodes ni ∈ N represent
the logic branch or converging points; and edges eij ∈ E, j
= 1, …, jm denote the software code between node i and
the node next to i. If an edge is executed, then every line
inside the edge is executed; i.e., no branch exists inside
an edge. It is assumed that there is an infinite capacity in
every edge, which means that each edge can have as many
tests as desired. Using c/c++ language as an example, the
nodes are collections of the beginning and the end of every
function, the beginning and the end of every conditional
block starting with ‘if’ or ‘switch’; while the edges are
collections of pieces of software between nodes that meet
one of the following conditions: (a) between the lines of
the start of each function and the first ‘if’, ‘switch’ or

‘while’; (b) between the lines ‘if’ and the line ‘else’ or
‘else if’ or the end of ‘if’, or between the line ‘else if’ and
the next ‘else if’ or the line that ends ‘if’; (c) between the
lines of ‘case’; (d) between the lines after the end of ‘if’
or the line after the end of ‘switch’ and the line before the
next ‘if’ or ‘switch’ or the line that ends the function. We
use the following simple pseudo c/c++ code to describe
the partition and the flow network concept.

Main(){ //node 1
Data initialization; //edge e11

If condition A holds //node 2
{

Process data; //edge e21

If data process success //node 3
{

Save result; //edge e31

}
Else if data process fail
{

Issue a warning; //edge e32

}
}
Else if condition A does not hold
{

Print “condition fail”; //edge e22

} //node 4
Clean memories; //edge e41

} //node 5

By applying the principles described above, the flow
network model corresponding to the pseudo code is given
in Fig. 3.

409NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.44 NO.4 MAY 2012

YANG et al., Reliability Estimation for a Digital Instrument and Control System

Fig. 3. The Flow Network Model of the Pseudo Code

410 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.44 NO.4 MAY 2012

YANG et al., Reliability Estimation for a Digital Instrument and Control System

4.2 Reliability Estimation for a Single Edge
Let Tij be the average execution time of the edge eij of

the software and hij be the total number of executions of
eij in the software test stage. If an edge eij of the software
is executed in a test scenario, we consider that the test
scenario covers the edge eij. Let eij = 1 denote an event in
which edge eij has been executed once and where the test
result meets the expectations, and let pij = P(eij = 1) denote
the probability of this event occurring. Let eij = 0 denote
an event in which edge eij has been executed once and
where the result fails to meet the expectations, and let qij

= P(eij = 0) = 1– pij be the probability of this event occurring.
Therefore, pij is the probability of having no error in eij and
qij is the probability of having at least one error in eij. Clearly,
the one-time test scenario follows a Bernoulli distribution.
Let mij be a positive real number1. We can set the failure
probability of eij to qij = 10–mij if eij is executed exactly one
time and the test result meets the expectation.

If all software test scenarios at the test stage do not
cover eik but cover instead eij, pik should be assigned a
smaller number than pij, or equivalently, qik should be
assigned a larger number than qij because eij passes some
tests and eik is not tested. For example, we may choose

As previously described, we define pik = 1 – qik.
It is likely that some edges are executed more than once

in the software test stage. These multiple-test scenarios
follow a binomial distribution. Also, some edges may be
tested more times than other edges. A main question in a
multiple-test scenario is how to determine failure probability
or reliability in these situations. The following reasoning
is proposed. First, if the software test scenarios cover edge
eij of the software multiple times and the test results meet
the expectations, then the estimated software failure
probability for eij should be reduced as more tests meet
the expectations. Moreover, if edge eik is executed more
times than edge eij in the test scenarios and if all of these
tests involving eik meet the test expectations, the failure
probability of edge eik should be smaller than the failure
probability of edge eij, i.e., qij > qik or pij < pik. Therefore, if
eij is executed exactly hij times and all tests meet the
expectations during the software test stage, the failure
probability of eij is defined as2

where mij can be any positive real number. If eij passed
previous (hij -1) tests and all of the tests met the expectations
but the hij th test fails to meet the expectations, the problem
in edge eij must be resolved. Because the code of eij is

changed after the modification, it follows a different
binomial distribution. As we have not tested this newly
modified eij thus far, we reset hij = 0 and consider the failure
probability as (9a).

We assume that the failure probability is reduced
exponentially with the number of continuously successful
tests, as each edge is very simple (without logic branches)
and because the number of lines of code in an edge is
normally small. This assumption has not been validated
thus far and is the main weakness of the suggested method
for now. We plan future work on a rigorous statistical
estimation of qij.

As the software test proceeds, all pij and qij values
should be updated using (9), and

Because multiple-test scenarios follow a binomial
distribution, if eij is executed exactly hij times, the failure
probability of eij includes the probability that all hij tests
fail to meet the expectations, the probability that hij – 1 tests
fail to meet the expectations, the probability that hij – 2 tests
fail to meet the expectation, and so on. Therefore, the
probability that eij has at least one error is the summation
of the probabilities of each of the above scenarios; i.e.,
the failure probability of eij is given by

where

Hence, if eij is executed exactly hij times at the software
test stage and if all hij executions meet the expectations,
then the reliability of edge eij is

Therefore, at the end of the test stage, the software
reliability can be modeled by a flow network whose
structure is represented by nodes and edges, and each edge
has its reliability determined by the test results and is
estimated by (12). Based on this observation, it becomes
possible to simplify the software reliability model by
repeatedly combining either serial connected edges or
parallel connected edges into a combined artificial edge.
In the following discussions, we present the procedures and
details pertaining to the combining of parallel connected
edges or serial connected edges into a single artificial edge;
we will also provide formulae to estimate the reliability of
the combined artificial edge depending on whether these
edges are serially connected or parallel-connected edges.

(9a)

(11)

(9b)

(10)

(12)

1 mij can be a function of the failure metrics, such as the lines of code in eij, developer experience, or past performance, etc.
2 The heuristic is that the more test scenarios the edge passes (the larger hij is), the lower failure probability the edge will have.

4.3 Reliability Estimation for Parallel Edge
First, for a block under node ni composed of jm parallel

connected edges, the total number of executions of all
parallel connected edges eij during the test stage is

and the total execution time of all parallel connected edges
eij under node ni during the test stage is the summation of
the execution time multiplied by the number of executions
of every edge, i.e.,

Given that edge eij has hij executions in the test stage
and each parallel edge with multiple tests follows a
binomial distribution,

holds for every parallel connected edge immediately
under node ni. As every edge in the parallel structure has its
own binomial distribution (pij + qij)hij and its own execution
time hijTij, the binomial distribution for the entire parallel
structure which has a total execution time of Ti should be
a convex combination of the binomial distributions of
individual edges weighted by ; i.e., an edge that has

longer execution time has a larger weight, and the summation

of all of the weights is Therefore, the distribution

of parallel edges should satisfy, considering (14) and
(15), the following relationship:

Hence, immediately following (16), the reliability of
the block composed of the parallel connected edges under
node ni is the event that every test has successfully passed.
The probability of this event is given by

The number of executions of the combined artificial
edge used in the next model reduction step is taken as the
summation of the number of the executions of all of the
edges in the parallel block,

The equivalent execution time for the combined
artificial edge (from the parallel block) used in the next

model reduction step is

The same method can be applied to the parallel
connected blocks, including blocks that are reduced to
artificial edges.

4.4 Reliability Estimation for Serial Edge
For a block under node ni1 composed of nodes i1,…,is

and serially connected edges (there are no parallel connected
edges in all nodes i1,…,is), the total number of executions
of all serially connected edges eij during the test stage is
hi = hij for any i ∈ i1,…, is, and the total execution time of
all serially connected edges eij under node ni during the test
stage is the summation of the execution time multiplied
by the number of executions of every edge, i.e.,

Given that edge eij has exactly hij executions in the
test stage and each serial edge with multiple tests follows
a binomial distribution,

holds for all serially connected edges immediately under
node ni1. For the serially connected edges, the reliability
of the entire block is the product of the reliabilities of the
individual edges. Considering (21), the following
relationship immediately holds:

Hence, the reliability of the block composed of serially
connected edges under node ni1 in the software is the event
that every test has successfully passed. The probability of
this event is given by

The number of executions of the combined artificial
edge used in the next model reduction step is taken as the
number of executions of any edge hij, where i ∈ i1,…, is, in
the serial block, and

The equivalent execution time for the combined
artificial edge (from the serial block) used in the next
model reduction step is

The same method can be applied to the serially
connected blocks, including blocks that are reduced to
artificial edges.

411NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.44 NO.4 MAY 2012

YANG et al., Reliability Estimation for a Digital Instrument and Control System

(13)

(14)

(18)

(20)

(21)

(22)

(23)

(25)

(24)

(19)

(15)

(16)

(17)

4.5 Overall Reliability Estimation of the Software
The overall reliability of the software is estimated as

follows. First, construct the flow network as discussed in
Section 4.1. As testing proceeds, repeatedly use (9-12) to
update the reliability for each edge. The reliability of
each edge is obtained when the test finishes. Given the
reliabilities of all of the edges, one can use equations (16-
19) to simplify parallel-connected edges into a single
artificial edge and use equations (22-25) to simplify
serially connected edges into a single artificial edge. The
software reliability is obtained by repeating the process
until all of the edges are combined into a single artificial
edge. We then obtain the total equivalent test time T and
the software reliability R. An example is used to describe
the process in the next subsection.

4.6 An Example
The pseudo c/c++ code example introduced in Section

4.1 is used to demonstrate how this software reliability
estimation method works. The software partitioned as in
Fig. 4 (a) has five nodes and six edges. Assume also that
three tests are conducted. The first test path is e11e21e31e41,
the second test path is e11e21e32e41, and the third test path is
e11e22e41. Assume further that the total test time is T = .00011
hours and Tij = .00001 hours for every edge. Therefore,
h11=h41=3, h21=2, and h22=h31=h32=1. Assume mij=2 for all
edges; thus, p11=p41=0.999999, p31=p32=p22=0.99, and
p21=0.9999. The following steps are used to obtain the
reliability, starting from the blocks that are composed of
only either parallel edges or serial edges:

• First, combining e31 and e32 gives T3=h31T31 + h32T32=

0.00002, ; using (17) for the parallel edges

e31 and e32, the flow network is reduced to Fig. 4 (b) with

R31=0.99. Using (18) and (19), we obtain

• Using (23) for the serial connection e21 and E31 to obtain
the combined edge, the flow network is reduced to
Fig. 4 (c) with R21=0.99992 * 0.992. Using (24) and (25),

we have =0.00002, and H21=h21=H31=2.

• Considering the parallel connection in Fig. 4 (c), T2=

H21T21 + h22T22=0.00005, and and using

(14) for the parallel connection E21 and e22, we reduce

Fig. 4 (c) to Fig. 4 (d) with

Using (18) and (19), we obtain and

• Finally using (23) for serial connection e1, E21, and e41,
we have

4.7 Software Failure Rate
For our analysis, the software failure rate can be

obtained from the reliability assuming time dependency
of the triggering conditions. Let T be the total test time.
Let the software reliability be R during the total test time T ;

412 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.44 NO.4 MAY 2012

YANG et al., Reliability Estimation for a Digital Instrument and Control System

Fig. 4. Reliability Calculation Procedures

thus, the software failure probability is (1-R) during the
total test time T. Let t be some unit time of the operational
period, for instance one year, of continuous operation.
Therefore, for the unit time of operational period t, the
software failure rate is given by

In some cases, the software is not always running. It
is executed only on demand. In this case, we need to
modify the definitions of T and t slightly. Let T be the total
number of test runs and t be the number of estimated
demands in a unit time of the operational period (i.e., one
year). In such a case, (26) continues to hold.

4.8 Automated Tool
It will be a tedious process if we directly apply the

methods described in the previous sections without
automated processes for software partition, data collection,
edge failure probability assignments, and reliability
estimations, as it is tedious to count and record all ni ∈ N,
eij ∈ E, Tij , T, and hij values manually; to update all qij and
pij manually; and to estimate the overall software reliability
manually using the model reduction method. However, with
an automated tool, the estimation of the software reliability
should be straightforward and free from human effort.

In many software development environments, the
software structure, including the relationships between
the calling and the called functions, is provided. For
example, LabView provides this relationship in a tree
structure. Therefore, it is possible, with some work, to
develop a tool to generate the flow network structure.

Also, a number of popular operating systems and
software development environments, such as Microsoft
Visual Studio and vxWorks, can select different modes,
such as debug and release modes. Different modes compile
and run the software differently. For example, if the debug
mode is selected, it can record the execution time for any
part of the software under the test. Therefore, techniques
for determining the CPU times Tij, T, and the number of
executions hij during the entire test stage are available.

It is proposed to add a test mode to the software
development environment. It should have the following
features:

1. When the software is compiled in the test mode, the tool
should record nodes ni ∈ N, edges eij ∈ E, and should
create the flow network structure of the software.

2 When testing starts, in every test scenario run, the
development environment should record hij, take
average of Tij, and accumulate T.

3. Software test engineers are required to examine and
accept/reject the test result. If the engineer accepts
the test result, the development environment should
update qij and pij, according to (9-12).

4. If a software defect is identified in edge eij, the defect
should be fixed. For all edges eij involved in the fix
(they may belong to different threads), hij should be

reset to one half, and qij and pij should be reset according
to the new hij, after which the test will continue and all
edge reliability estimation processes will be updated
using (9-12) as before.

5. When all testing is complete, estimate the software
reliability according to (13-25) and use the procedure
presented in Section 4.5.

6. To improve the reliability of the software, the edges
tested least should undergo more tests. Therefore, the
information on these edges should be provided.

7. The information on the software reliability should be
kept in the release mode. It should be available for
reading if a request is made.
In summary, an automated tool in the software

development environment is desirable, and it should have
the features listed above to facilitate software reliability
estimation. We believe, with some extra effort on top of the
existing software development environment, that software
development tool vendors should be able to provide all of
the information to assess software reliability.

5. FIRMWARE COMPONENT FAILURE MODEL

It is possible that some components will use firmware,
such as a “smart sensor” or a board in a computer system,
which has both hardware and software inside. Assume that
the hardware has been tested and that the unreliability is
obtained and given by (1); the software has been tested
and the software reliability is evaluated using the method
described in Section 4 and the unreliability is given by 1–
R. Let A be the event of a software failure and B be the
event of a hardware failure. Thus, the probability of a
board failure is

where

Because max(p(AB), p(BA))<1, p(A•B) is smaller
than p=min(p(A),p(B)), it should be feasible to use the
conservative “parts count” method described in [11]
because the fault tree model evaluation is the order of
magnitude of the failure rate. This gives

where the value of λ is obtained from (8).

6. ESTIMATE THE SYSTEM FAILURE RATE

6.1 Minimal Cut Set Unreliability
For single failures, it is clear that the minimal cut set

unreliability is the component unreliability. For a minimal
cut set with multiple failures, the minimal cut set unreliability

413NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.44 NO.4 MAY 2012

YANG et al., Reliability Estimation for a Digital Instrument and Control System

(26)

(29)

(27)

(28)

is simply determined by the multiplication of the unreliability
of the components that are composed of the minimal cut set.

6.2 DI&C System Unreliability
Once we have determined the unreliability of all of

the minimal cut sets, the unreliability of the entire DI&C
system is the summation of the unreliability of all the
minimal cut sets because the probability of two or more
minimal cut sets occurring simultaneously is negligible
[11, XI-19]. As indicated in Section 2, this method has
the capability to handle common-cause failures.

7. CONCLUSIONS

In this paper, we proposed a systematic method to
estimate the reliability of DI&C systems. A fault tree is used
to model DI&C system unreliability, and common-cause
failures can easily be treated in this model. Boolean algebra
is used to derive the minimal cut sets. An exponential
distribution is used to model hardware reliability. Bayesian
estimation is used to estimate hardware failure rates. A
binomial distribution and flow network are used to model
software reliability, and testing is used to estimate the
software failure rates. Using the hardware failure rates and
the software failure rates, the firmware failure rates can
be obtained by the parts-count method. These failure rates
can be used to calculate the minimal cut set unreliability.
Finally, the DI&C system unreliability can be obtained
by the summation of all of the unreliability measures of
the minimal cut sets.

ACKNOWLEDGMENTS
The authors would like to thank three anonymous

reviews for their valuable comments, which lead to
significant improvements to the presentation of the paper.

REFERENCES_______________________________
[1] J. Dennis Lawrence, “Software Reliability and Safety in

Nuclear Reactor Protection Systems”, US Nuclear Regulatory
Commission, NUREG/CR-6001, 1993.

[2] David Lorge Parnas, G. J. K. Asmis, and Jan Madey,
“Assessment of safety-critical software in nuclear power
plants,” Nuclear Safety, Vol. 32, No. 2 pp.189-198 (1991).

[3] N. G. Leveson, P. R. Harvey, “Analyzing software safety,”
IEEE Trans. On Software Engineering, Vol. 9, pp. 569-
579, (1983).

[4] W. Farr, “Software Reliability Modeling Survey”, in
Handbook of Software Reliability Engineering, Edited by
Michael R. Lyu, IEEE Computer Society Press and
McGraw-Hill Book Company, pp71-117, 1996.

[5] S. Kuo, C. Huang, and M. Lyu, “Framework for modeling
software reliability, using various testing-efforts and fault-

detection rate,” IEEE Transactions on Reliability, Vol. 50,
pp.310-320, 2001.

[6] H. Okamura, M. Ando, and T. Dohi, “A generalized gamma
software reliability model,” Systems and Computers in
Japan, Vol. 38, pp81-90, 2007.

[7] W. Wang, T. Hemminger, and M. Tang, “A moving average
Non-Homogeneous Poisson Process Reliability Growth
Model to Account for Software with Repair and System
Structure,” IEEE Transactions on Reliability, Vol. 56, No.
3 pp. 411-421, (2007).

[8] C. Huang and C. Lin, “Software Reliability Analysis by
Considering Fault Dependency and Debugging Time Lag,”
IEEE Transactions on Reliability, Vol. 55, No. 2 pp. 436-
450, (2006).

[9] IEC standard, IEC 61508 (all parts): Functional safety of
electrical/electronic/programmable electronic safety-related
systems, 2008.

[10] H. A. Watson, “Launch control safety study,” Bell Telephone
Labs, Murray Hill, NJ USA, 1961.

[11] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F.
Haasl, “Fault tree handbook,” US Nuclear Regulatory
Commission, NUREG-0492, 1981.

[12] T. L. Chu, G. Martine-Guridi, M. Yue, and P. Samanta,
“Traditional probabilistic risk assessment methods for
digital system,” US Nuclear Regulatory Commission,
NUREG/CR-6962, 2008.

[13] S. C. Bhatt and R. C. Wachowiak “ESBWR certification
probabilistic risk assessment,” GE-Hitachi Nuclear Energy,
NEDO-33201, Revision 2, 2007.

[14] A. E. Green and A. J. Bounme, Reliability technology,
Wiley-Interscience, London, (1972).

[15] U.S. Nuclear Regulatory Commission, “Reactor safety
study-an assessment of accident risks in U.S. commercial
nuclear power plant”, NUREG-75/014, October, 1975.

[16] Department of Defense, “Reliability prediction of electronic
equipment, Notice 2,” MIL-HDBK-217F, 1995.

[17] S. J. Press, Bayesian statistics: principles, models, and
applications, John Wiley & Sons, New York, (1989).

[18] A. Elfessi and D. M. Eineke, “A Bayesian look at classical
estimation: the exponential distribution,” Journal of Statistics
Education, 2001, [online] 9(1). http://www.amstat.org/
publications/jse/v9n1/elfessi.html

[19] J. H. Bickel, “Risk Implications of Digital Reactor Protection
System Operating Experience,” Reliability Engineering &
System Safety, Vol. 93, pp107-124 (2008).

[20] Y. Yang, “A flow network model for software reliability
assessment,” Proceedings of 6th American nuclear society
international topical meeting on nuclear plant instrumentation,
control, and human-machine interface technologies (2009),
Knoxville, April 5-9, 2009.

[21] T. L. Chu, M. Yue, G. Martinez-Gruidi, and J. Lehner,
Review of quantitative software reliability methods, BNL-
94074-2010, Brookhaven National Laboratory (2010).

[22] Y. Yang and R. Sydnor, “Multi-threads software reliability
estimation based on test results and software structure,”
Proceedings of 10th international probabilistic safety
assessment and management conference (2010), Seattle,
June 7-11, 2010.

414 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.44 NO.4 MAY 2012

YANG et al., Reliability Estimation for a Digital Instrument and Control System

