Prepration of Hydoxy Polyimde Membranes and Their Carbon Dioxide Permeation Property

Hydroxy Polyimide 막의 제조와 이산화탄소 투과 특성

  • Woo, Seung-Moon (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University) ;
  • Choi, Jong-Jin (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University) ;
  • Nam, Sang-Yong (School of Materials Science and Engineering, Engineering Research Institute, I-Cube Center, Gyeongsang National University)
  • 우승문 (경상대학교 나노신소재공학부 공학연구원 아이큐브사업단) ;
  • 최종진 (경상대학교 나노신소재공학부 공학연구원 아이큐브사업단) ;
  • 남상용 (경상대학교 나노신소재공학부 공학연구원 아이큐브사업단)
  • Received : 2012.04.24
  • Accepted : 2012.04.26
  • Published : 2012.04.30

Abstract

In this study, hydroxy polyimide (HPI) was prepared for non-porous membrane by solvent evaporation method. As the result of gas permeance properties measurement, $CO_2$ permeability was 85 Barrer and the $CO_2/N_2$ selectivity was 23 at $30^{\circ}C$. Flat sheet membrane and hollow fiber membrane were prepared by using ternary system of polymer, solvent and non-solvent additive. Morphologies and gas permeance properties were measured by FE-SEM and bubble flow meter. Each $CO_2$ permeability of 18.28 GPU, 70 GPU and $CO_2/N_2$ selectivity of 6.72, 8.63 at $30^{\circ}C$ in the flat sheet membrane and hollow fiber membrane. Hollow fiber membrane has gas permeance property better than flat sheet membrane.

본 연구에서는 hydroxy polyimide (HPI)로 용매 증발법에 의해 제조가 되었다. 비다공성막의 기체투과성능측정 결과로써, $CO_2$ 투과도는 약 85 Barrer이고, $CO_2/N_2$선택도는 23으로 측정되었다. 고분자, 용매, 비용매-첨가제의 3성분계 시스템을 도입하여 평막과 중공사막을 제조하였고, 모폴로지와 기체투과성능을 전계방출형전자주사현미경과 버블플로우메타로 측정하였다. 평막과 중공사막에서 $CO_2$투과도와 $CO_2/N_2$ 선택도는 각각 18.28 GPU, 70 GPU를 6.72, 8.63으로 나타남을 확인하였다. 중공사막이 평막보다 기체투과특성이 우수하다는 것을 확인하였다.

Keywords

References

  1. IEA, World Energy Outlook (2006).
  2. IEA, Energy Technology Perspectives (2006).
  3. IEA, Energy Technology Perspectives 2008: Scenarios and Strategies to 2050, OECD/IEA, Paris (2008).
  4. C. Yi, S. Jo, Y. Seo, J. Lee, and C. Ryu, "Continuous operation of the potassium-based dry sorbent $CO_2$ capture process with two fluidized-bed reactors", International Journal of Green House Gas Control, 1, 31 (2007). https://doi.org/10.1016/S1750-5836(07)00014-X
  5. K. Nakagawa, "Optical anisotropy of polyimide", J. Appl. Polym. Sci., 41, 2049 (1990). https://doi.org/10.1002/app.1990.070410911
  6. C. E. Hoyle and E. T. Anzures, "Photodegradation of polyimide. I. A spectral, viscometic, chromatographic, and weight loss investigation of polyimides based on a hexafluorinated dianhydride", J. Appl. Polym. Sci., 43, 1 (1991). https://doi.org/10.1002/app.1991.070430101
  7. C. E. Hoyle and E. T. Anzures, "Photodegradation of polyimides. II. Thermal property canges of polyimides based on a hexaflurorinated dianhydride", J. Appl. Polym. Sci., 43, 1 (1991). https://doi.org/10.1002/app.1991.070430101
  8. H. Lin and B. Freeman, "Membrane materials to remove $CO_2$ from gas mixtures", J. Mol. Stucture., 739, 57 (2005). https://doi.org/10.1016/j.molstruc.2004.07.045
  9. H. Park, C. Jung, Y. Lee, A. Hill, J. Pas, S. Mudie, E. Wagner, B. Freeman, and D. Cookson, "Polymer with cavities tuned for fast selective transport of small molecules and ion", Science, 318, 254 (2007). https://doi.org/10.1126/science.1146744
  10. C. H. Jung and Y. M. Lee, "Gas permeation properties of hydroxyl-group containing polyimide membranes", Macromol. Res., 16, 555 (2008). https://doi.org/10.1007/BF03218559
  11. S. M. Woo, J. J. Choi, and S. Y. Nam, "Preparation of hydroxy polyimde membranes for gas separation by phase inversion method", Membrane Journal, 22, 62 (2012).
  12. H. C. Koh, S. Y. Ha, and S. Y. Nam, "Preparation and properties of hollow fiber membrane for gas separation membrane using CTA", Membrane Journal, 21, 98 (2011).
  13. J. Crank and G. S. Park, "Diffusion in polymer, 2nd ed.", Clar-endon, Oxford., 968 (1977).
  14. D. Y. Oh and S. Y. Nam, "Developemental trend of polyimide membranes for gas separation", Membrane Journal, 21, 307 (2011).
  15. M. Mulder, "Basic principles of membrane techology", Kluwer Academic Publishers. (1991).
  16. V. Stannett, "The transport of gases in synthetic polymeric membrnaes an historic perspective", J. Membr. Sci., 3, 97 (1978). https://doi.org/10.1016/S0376-7388(00)83016-1